Skip to main content

Dietary Phenolic Compounds in Biological Samples: Current Challenges in Analytical Chemistry

  • Reference work entry
  • First Online:
Bioactive Molecules in Food

Part of the book series: Reference Series in Phytochemistry ((RSP))

Abstract

Phenolic compounds are bioactive molecules relevant in plant-derived foods and are associated with beneficial health effects in humans. The metabolism of these phytonutrients comprises of the absorption, distribution, metabolism, and excretion and is investigated in in vivo intervention or in vitro cell culture studies. Blood and urine samples are collected during animal or human trials, and matrix effects caused by high protein and salt concentration are a major challenge during analysis. This chapter describes the context between the matrix effects which arise during phenolic compound analysis from biological samples and possible analytical techniques to handle these challenges. Difficulties arise from interfering matrix compounds, low concentrations of chemically heterogeneous metabolites, and the lack of reference compounds. Therefore, interactions of phenolic compounds with plasma proteins are reviewed, as well as ion suppression as one of the most common matrix effects during LC-MS analysis. Frequently used analytical techniques for sample preparation, compound synthesis, separation, and detection are described in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

ADME:

Absorption, distribution, metabolism, excretion

APCI:

Atmospheric-pressure chemical ionization

BSA:

Bovine serum albumin

CCS:

Collision cross-section

CE:

Capillary electrophoresis

CEAD:

Coulometric electrode-array detection

COMT:

Catechol-O-methyltransferase

DMF:

Dimethylformamide

EC:

Epicatechin

ECG:

Epicatechin-3-gallate

EGC:

Epigallocatechin

EGCG:

Epigallocatechin-3-gallate

ESI:

Electrospray ionization

HILIC:

Hydrophilic interaction liquid chromatography

HSA:

Human serum albumin

IT:

Ion trap

LC:

Liquid chromatography

m/z :

Mass-to-charge ratio

MALDI:

Matrix-assisted laser desorption ionization

MRM:

Multiple reaction monitoring

MRP:

Multidrug resistance protein family

MS:

Mass spectrometry

NMR:

Nuclear magnetic resonance spectroscopy

NP:

Normal-phase

QqQ:

Triple quadrupole

RP:

Reversed-phase

SIM:

Selected ion monitoring

SPE:

Solid-phase extraction

SULT:

Sulfotransferase

TFA:

Trifluoroacetic acid

ToF:

Time-of-flight

UGT:

Uridine-5′-diphosphate glucuronosyltransferases

(U)HPLC:

(Ultra)-High-performance liquid chromatography

References

  1. Quideau S, Deffieux D, Douat-Casassus C, Pouységu L (2011) Plant polyphenols: chemical properties, biological activities, and synthesis. Angew Chem Int Ed 50:586–621. https://doi.org/10.1002/anie.201000044

    Article  CAS  Google Scholar 

  2. Bravo L (1998) Polyphenols: chemistry, dietary sources, metabolism, and nutritional significance. Nutr Rev 56:317–333. https://doi.org/10.1111/j.1753-4887.1998.tb01670.x

    Article  CAS  PubMed  Google Scholar 

  3. Watzl B, Leitzmann C (2005) Bioaktive Substanzen in Lebensmitteln, 3. unveränderte. Hippokrates Verlag, Stuttgart

    Google Scholar 

  4. Manach C, Scalbert A, Morand C et al (2004) Polyphenols: food sources and bioavailability. Am J Clin Nutr 79:727–747

    Article  CAS  PubMed  Google Scholar 

  5. Hollman PCH (2014) Unravelling of the health effects of polyphenols is a complex puzzle complicated by metabolism. Arch Biochem Biophys 559:100–105. https://doi.org/10.1016/j.abb.2014.04.013

    Article  CAS  PubMed  Google Scholar 

  6. Zamora-Ros R, Knaze V, Rothwell JA et al (2016) Dietary polyphenol intake in Europe: the European prospective investigation into cancer and nutrition (EPIC) study. Eur J Nutr 55:1359–1375. https://doi.org/10.1007/s00394-015-0950-x

    Article  CAS  PubMed  Google Scholar 

  7. Cassidy A, Minihane A-M (2017) The role of metabolism (and the microbiome) in defining the clinical efficacy of dietary flavonoids. Am J Clin Nutr 105:10–22. https://doi.org/10.3945/ajcn.116.136051

    Article  CAS  PubMed  Google Scholar 

  8. Gormaz JG, Valls N, Sotomayor C et al (2016) Potential role of polyphenols in the prevention of cardiovascular diseases: molecular bases. Curr Med Chem 23:115–128

    Article  CAS  PubMed  Google Scholar 

  9. Bennick A (2002) Interaction of plant polyphenols with salivary proteins. Crit Rev Oral Biol Med 13:184–196. https://doi.org/10.1177/154411130201300208

    Article  PubMed  Google Scholar 

  10. Fernandes I, Faria A, Calhau C et al (2014) Bioavailability of anthocyanins and derivatives. J Funct Foods 7:54–66. https://doi.org/10.1016/j.jff.2013.05.010

    Article  CAS  Google Scholar 

  11. Bohn T, McDougall GJ, Alegría A et al (2015) Mind the gap-deficits in our knowledge of aspects impacting the bioavailability of phytochemicals and their metabolites-a position paper focusing on carotenoids and polyphenols. Mol Nutr Food Res 59:1307–1323. https://doi.org/10.1002/mnfr.201400745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Koster H, Halsema I, Scholtens E et al (1981) Dose-dependent shifts in the sulfation and glucuronidation of phenolic compounds in the rat in vivo and in isolated hepatocytes. Biochem Pharmacol 30:2569–2575. https://doi.org/10.1016/0006-2952(81)90584-0

    Article  CAS  PubMed  Google Scholar 

  13. Mullen W, Edwards CA, Crozier A (2006) Absorption, excretion and metabolite profiling of methyl-, glucuronyl-, glucosyl- and sulpho-conjugates of quercetin in human plasma and urine after ingestion of onions. Br J Nutr 96:107–116. https://doi.org/10.1079/BJN20061809

    Article  CAS  PubMed  Google Scholar 

  14. O’Leary KA, Day AJ, Needs PW et al (2003) Metabolism of quercetin-7- and quercetin-3-glucuronides by an in vitro hepatic model: the role of human beta-glucuronidase, sulfotransferase, catechol-O-methyltransferase and multi-resistant protein 2 (MRP2) in flavonoid metabolism. Biochem Pharmacol 65:479–491

    Article  PubMed  Google Scholar 

  15. Crozier A, Del Rio D, Clifford MN (2010) Bioavailability of dietary flavonoids and phenolic compounds. Mol Asp Med 31:446–467. https://doi.org/10.1016/j.mam.2010.09.007

    Article  CAS  Google Scholar 

  16. Boersma MG, van der Woude H, Bogaards J et al (2002) Regioselectivity of phase II metabolism of Luteolin and quercetin by UDP-Glucuronosyl transferases. Chem Res Toxicol 15:662–670. https://doi.org/10.1021/tx0101705

    Article  CAS  PubMed  Google Scholar 

  17. Spencer JP, Chowrimootoo G, Choudhury R et al (1999) The small intestine can both absorb and glucuronidate luminal flavonoids. FEBS Lett 458:224–230. https://doi.org/10.1016/S0014-5793(99)01160-6

    Article  CAS  PubMed  Google Scholar 

  18. Melo-Filho CC, Braga RC, Andrade CH (2014) Advances in methods for predicting phase I metabolism of polyphenols. Curr Drug Metab 15:120–126

    Article  PubMed  Google Scholar 

  19. Monagas M, Urpi-Sarda M, Sánchez-Patán F et al (2010) Insights into the metabolism and microbial biotransformation of dietary flavan-3-ols and the bioactivity of their metabolites. Food Funct 1:233–253. https://doi.org/10.1039/c0fo00132e

    Article  CAS  PubMed  Google Scholar 

  20. Tomás-Barberán FA, Selma MV, Espín JC (2016) Interactions of gut microbiota with dietary polyphenols and consequences to human health. Curr Opin Clin Nutr Metab Care 19:471–476. https://doi.org/10.1097/MCO.0000000000000314

    Article  CAS  PubMed  Google Scholar 

  21. Manach C, Williamson G, Morand C et al (2005) Bioavailability and bioefficacy of polyphenols in humans. I. Review of 97 bioavailability studies. Am J Clin Nutr 81:230S–242S

    Article  CAS  PubMed  Google Scholar 

  22. Williamson G, Manach C (2005) Bioavailability and bioefficacy of polyphenols in humans. II. Review of 93 intervention studies1–4. Am J Clin Nutr 81:243S–255S

    Article  CAS  PubMed  Google Scholar 

  23. Gleichenhagen M, Schieber A (2016) Current challenges in polyphenol analytical chemistry. Curr Opin Food Sci 7:43–49. https://doi.org/10.1016/j.cofs.2015.10.004

    Article  Google Scholar 

  24. Annesley TM (2003) Ion suppression in mass spectrometry. Clin Chem 49:1041–1044. https://doi.org/10.1373/49.7.1041

    Article  CAS  PubMed  Google Scholar 

  25. Day AJ, Morgan MR (2003) Methods of polpyhenol extraction from biological fluids and tissues. In: Santos-Buelga C, Williamson G (eds) Methods in polyphenol analysis. Royal Society of Chemistry, Cambridge, pp 17–47

    Google Scholar 

  26. Gonzalez-Barrio R, Edwards CA, Crozier A (2011) Colonic catabolism of ellagitannins, ellagic acid, and raspberry anthocyanins: in vivo and in vitro studies. Drug Metab Dispos 39:1680–1688. https://doi.org/10.1124/dmd.111.039651

    Article  CAS  PubMed  Google Scholar 

  27. Dall’Asta M, Calani L, Tedeschi M et al (2012) Identification of microbial metabolites derived from in vitro fecal fermentation of different polyphenolic food sources. Nutrition 28:197–203. https://doi.org/10.1016/j.nut.2011.06.005

    Article  CAS  PubMed  Google Scholar 

  28. Savage DC (1977) Microbial ecology of the gastrointestinal tract. Annu Rev Microbiol 31:107–133. https://doi.org/10.1146/annurev.mi.31.100177.000543

    Article  CAS  PubMed  Google Scholar 

  29. Qin J, Li R, Raes J et al (2010) A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464:59–65. https://doi.org/10.1038/nature08821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hu M (2003) Metabolism of flavonoids via enteric recycling: mechanistic studies of disposition of Apigenin in the Caco-2 cell culture model. J Pharmacol Exp Ther 307:314–321. https://doi.org/10.1124/jpet.103.053496

    Article  CAS  PubMed  Google Scholar 

  31. Youdim KA, Dobbie MS, Kuhnle G et al (2003) Interaction between flavonoids and the blood-brain barrier: in vitro studies: interaction between flavonoids and the blood-brain barrier. J Neurochem 85:180–192. https://doi.org/10.1046/j.1471-4159.2003.01652.x

    Article  CAS  PubMed  Google Scholar 

  32. Aragonès G, Danesi F, Del Rio D, Mena P (2017) The importance of studying cell metabolism when testing the bioactivity of phenolic compounds. Trends Food Sci Technol 69:230–242. https://doi.org/10.1016/j.tifs.2017.02.001

    Article  CAS  Google Scholar 

  33. Lehtonen H-M, Lindstedt A, Järvinen R et al (2013) 1H NMR-based metabolic fingerprinting of urine metabolites after consumption of lingonberries (Vaccinium vitis-idaea) with a high-fat meal. Food Chem 138:982–990. https://doi.org/10.1016/j.foodchem.2012.10.081

    Article  CAS  PubMed  Google Scholar 

  34. Felgines C, Talavéra S, Gonthier M-P et al (2003) Strawberry anthocyanins are recovered in urine as glucuro- and sulfoconjugates in humans. J Nutr 133:1296–1301

    Article  CAS  PubMed  Google Scholar 

  35. Taylor PJ (2005) Matrix effects: the Achilles heel of quantitative high-performance liquid chromatography–electrospray–tandem mass spectrometry. Clin Biochem 38:328–334. https://doi.org/10.1016/j.clinbiochem.2004.11.007

    Article  CAS  PubMed  Google Scholar 

  36. Krebs HA (1950) Chemical composition of blood plasma and serum. Annu Rev Biochem 19:409–430. https://doi.org/10.1146/annurev.bi.19.070150.002205

    Article  CAS  PubMed  Google Scholar 

  37. Andres-Lacueva C, Shukitt-Hale B, Galli RL et al (2005) Anthocyanins in aged blueberry-fed rats are found centrally and may enhance memory. Nutr Neurosci 8:111–120. https://doi.org/10.1080/10284150500078117

    Article  CAS  PubMed  Google Scholar 

  38. Hall JE (2016) Pocket companion to Guyton and hall textbook of medical physiology, 13th edn. Elsevier, Philadelphia

    Google Scholar 

  39. Ito H, Gonthier M-P, Manach C et al (2005) Polyphenol levels in human urine after intake of six different polyphenol-rich beverages. Br J Nutr 94:500–509. https://doi.org/10.1079/BJN20051522

    Article  CAS  PubMed  Google Scholar 

  40. Edmands WM, Ferrari P, Rothwell JA et al (2015) Polyphenol metabolome in human urine and its association with intake of polyphenol-rich foods across European countries. Am J Clin Nutr 102:905–913. https://doi.org/10.3945/ajcn.114.101881

    Article  CAS  PubMed  Google Scholar 

  41. Kragh-Hansen U (1981) Molecular aspects of ligand binding to serum albumin. Pharmacol Rev 33:17–53

    CAS  PubMed  Google Scholar 

  42. Sudlow G, Birkett DJ, Wade DN (1976) Further characterization of specific drug binding sites on human serum albumin. Mol Pharmacol 12:1052–1061

    CAS  PubMed  Google Scholar 

  43. Fehske KJ, Müller WE, Wollert U (1981) The location of drug binding sites in human serum albumin. Biochem Pharmacol 30:687–692. https://doi.org/10.1016/0006-2952(81)90151-9

    Article  CAS  PubMed  Google Scholar 

  44. Ghuman J, Zunszain PA, Petitpas I et al (2005) Structural basis of the drug-binding specificity of human serum albumin. J Mol Biol 353:38–52. https://doi.org/10.1016/j.jmb.2005.07.075

    Article  CAS  PubMed  Google Scholar 

  45. Dufour C, Dangles O (2005) Flavonoid–serum albumin complexation: determination of binding constants and binding sites by fluorescence spectroscopy. Biochim Biophys Acta 1721:164–173. https://doi.org/10.1016/j.bbagen.2004.10.013

    Article  CAS  PubMed  Google Scholar 

  46. Boulton DW, Walle UK, Walle T (1998) Extensive binding of the bioflavonoid quercetin to human plasma proteins. J Pharm Pharmacol 50:243–249. https://doi.org/10.1111/j.2042-7158.1998.tb06183.x

    Article  CAS  PubMed  Google Scholar 

  47. Papadopoulou A, Green RJ, Frazier RA (2005) Interaction of flavonoids with bovine serum albumin: a fluorescence quenching study. J Agric Food Chem 53:158–163. https://doi.org/10.1021/jf048693g

    Article  CAS  PubMed  Google Scholar 

  48. Skrt M, Benedik E, Podlipnik Č, Ulrih NP (2012) Interactions of different polyphenols with bovine serum albumin using fluorescence quenching and molecular docking. Food Chem 135:2418–2424. https://doi.org/10.1016/j.foodchem.2012.06.114

    Article  CAS  PubMed  Google Scholar 

  49. Soares S, Mateus N, de Freitas V (2007) Interaction of different polyphenols with bovine serum albumin (BSA) and human salivary α-amylase (HSA) by fluorescence quenching. J Agric Food Chem 55:6726–6735. https://doi.org/10.1021/jf070905x

    Article  CAS  PubMed  Google Scholar 

  50. Maiti TK, Ghosh KS, Dasgupta S (2006) Interaction of (−)-epigallocatechin-3-gallate with human serum albumin: fluorescence, fourier transform infrared, circular dichroism, and docking studies. Proteins Struct Funct Bioinf 64:355–362. https://doi.org/10.1002/prot.20995

    Article  CAS  Google Scholar 

  51. Lakowicz JR (2006) Quenching of fluorescence. In: Principles of fluorescence spectroscopy. Springer, Boston, pp 277–330

    Chapter  Google Scholar 

  52. Bourassa P, Kanakis CD, Tarantilis P et al (2010) Resveratrol, genistein, and curcumin bind bovine serum albumin. J Phys Chem B 114:3348–3354. https://doi.org/10.1021/jp9115996

    Article  CAS  PubMed  Google Scholar 

  53. Dobreva MA, Green RJ, Mueller-Harvey I et al (2014) Size and molecular flexibility affect the binding of ellagitannins to bovine serum albumin. J Agric Food Chem 62:9186–9194. https://doi.org/10.1021/jf502174r

    Article  CAS  PubMed  Google Scholar 

  54. Liu E-H, Qi L-W, Li P (2010) Structural relationship and binding mechanisms of five flavonoids with bovine serum albumin. Molecules 15:9092–9103. https://doi.org/10.3390/molecules15129092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Wu Y, Cheng H, Chen Y et al (2017) Formation of a multiligand complex of bovine serum albumin with retinol, resveratrol, and (−)-epigallocatechin-3-gallate for the protection of bioactive components. J Agric Food Chem 65:3019–3030. https://doi.org/10.1021/acs.jafc.7b00326

    Article  CAS  PubMed  Google Scholar 

  56. Xiao J, Suzuki M, Jiang X et al (2008) Influence of B-ring hydroxylation on interactions of flavonols with bovine serum albumin. J Agric Food Chem 56:2350–2356. https://doi.org/10.1021/jf7037295

    Article  CAS  PubMed  Google Scholar 

  57. de Freitas V, Mateus N (2001) Structural features of Procyanidin interactions with salivary proteins. J Agric Food Chem 49:940–945. https://doi.org/10.1021/jf000981z

    Article  CAS  PubMed  Google Scholar 

  58. Minoda K, Ichikawa T, Katsumata T et al (2010) Influence of the Galloyl moiety in tea Catechins on binding affinity for human serum albumin. J Nutr Sci Vitaminol (Tokyo) 56:331–334. https://doi.org/10.3177/jnsv.56.331

    Article  CAS  PubMed  Google Scholar 

  59. He J, Giusti MM (2010) Anthocyanins: natural colorants with health-promoting properties. Annu Rev Food Sci Technol 1:163–187. https://doi.org/10.1146/annurev.food.080708.100754

    Article  CAS  PubMed  Google Scholar 

  60. Cahyana Y, Gordon MH (2013) Interaction of anthocyanins with human serum albumin: influence of pH and chemical structure on binding. Food Chem 141:2278–2285. https://doi.org/10.1016/j.foodchem.2013.05.026

    Article  CAS  PubMed  Google Scholar 

  61. Gosetti F, Mazzucco E, Zampieri D, Gennaro MC (2010) Signal suppression/enhancement in high-performance liquid chromatography tandem mass spectrometry. J Chromatogr A 1217:3929–3937. https://doi.org/10.1016/j.chroma.2009.11.060

    Article  CAS  PubMed  Google Scholar 

  62. Bylda C, Thiele R, Kobold U, Volmer DA (2014) Recent advances in sample preparation techniques to overcome difficulties encountered during quantitative analysis of small molecules from biofluids using LC-MS/MS. Analyst 139:2265–2276. https://doi.org/10.1039/c4an00094c

    Article  CAS  PubMed  Google Scholar 

  63. Antignac J-P, de Wasch K, Monteau F et al (2005) The ion suppression phenomenon in liquid chromatography–mass spectrometry and its consequences in the field of residue analysis. Anal Chim Acta 529:129–136. https://doi.org/10.1016/j.aca.2004.08.055

    Article  CAS  Google Scholar 

  64. Matuszewski BK, Constanzer ML, Chavez-Eng CM (2003) Strategies for the assessment of matrix effect in quantitative bioanalytical methods based on HPLC−MS/MS. Anal Chem 75:3019–3030. https://doi.org/10.1021/ac020361s

    Article  CAS  PubMed  Google Scholar 

  65. Cuyckens F, Claeys M (2004) Mass spectrometry in the structural analysis of flavonoids. J Mass Spectrom 39:1–15. https://doi.org/10.1002/jms.585

    Article  CAS  PubMed  Google Scholar 

  66. Gasperotti M, Masuero D, Guella G et al (2014) Development of a targeted method for twenty-three metabolites related to polyphenol gut microbial metabolism in biological samples, using SPE and UHPLC–ESI-MS/MS. Talanta 128:221–230. https://doi.org/10.1016/j.talanta.2014.04.058

    Article  CAS  PubMed  Google Scholar 

  67. Mülek M, Högger P (2015) Highly sensitive analysis of polyphenols and their metabolites in human blood cells using dispersive SPE extraction and LC-MS/MS. Anal Bioanal Chem 407:1885–1899. https://doi.org/10.1007/s00216-014-8451-y

    Article  CAS  PubMed  Google Scholar 

  68. de Ferrars RM, Czank C, Saha S et al (2014) Methods for isolating, identifying, and quantifying anthocyanin metabolites in clinical samples. Anal Chem 86:10052–10058. https://doi.org/10.1021/ac500565a

    Article  CAS  PubMed  Google Scholar 

  69. Bagchi D, Swaroop A, Bagchi M (2015) Genomics, proteomics and metabolomics in nutraceuticals and functional foods, 2nd edn. Wiley, Chichester/Hoboken

    Book  Google Scholar 

  70. Urpi-Sarda M, Boto-Ordóñez M, Queipo-Ortuño MI et al (2015) Phenolic and microbial-targeted metabolomics to discovering and evaluating wine intake biomarkers in human urine and plasma: general. Electrophoresis 36:2259–2268. https://doi.org/10.1002/elps.201400506

    Article  CAS  PubMed  Google Scholar 

  71. Katz S, Klotz IM (1953) Interactions of calcium with serum albumin. Arch Biochem Biophys 44:351–361. https://doi.org/10.1016/0003-9861(53)90054-X

    Article  CAS  PubMed  Google Scholar 

  72. Feliciano RP, Mecha E, Bronze MR, Rodriguez-Mateos A (2016) Development and validation of a high-throughput micro solid-phase extraction method coupled with ultra-high-performance liquid chromatography-quadrupole time-of-flight mass spectrometry for rapid identification and quantification of phenolic metabolites in human plasma and urine. J Chromatogr A 1464:21–31. https://doi.org/10.1016/j.chroma.2016.08.027

    Article  CAS  PubMed  Google Scholar 

  73. Hennion M-C (1999) Solid-phase extraction: method development, sorbents, and coupling with liquid chromatography. J Chromatogr A 856:3–54. https://doi.org/10.1016/S0021-9673(99)00832-8

    Article  CAS  PubMed  Google Scholar 

  74. Suárez M, Romero M-P, Macià A et al (2009) Improved method for identifying and quantifying olive oil phenolic compounds and their metabolites in human plasma by microelution solid-phase extraction plate and liquid chromatography–tandem mass spectrometry. J Chromatogr B 877:4097–4106. https://doi.org/10.1016/j.jchromb.2009.10.025

    Article  CAS  Google Scholar 

  75. Gleichenhagen M, Zimmermann BF, Herzig B et al (2013) Intrinsic isotopic 13C labelling of polyphenols. Food Chem 141:2582–2590. https://doi.org/10.1016/j.foodchem.2013.05.070

    Article  CAS  PubMed  Google Scholar 

  76. Souverain S, Rudaz S, Veuthey J-L (2004) Protein precipitation for the analysis of a drug cocktail in plasma by LC–ESI–MS. J Pharm Biomed Anal 35:913–920. https://doi.org/10.1016/j.jpba.2004.03.005

    Article  CAS  PubMed  Google Scholar 

  77. Kuhlmann FE, Apffel A, Fischer SM et al (1995) Signal enhancement for gradient reverse-phase high-performance liquid chromatography-electrospray ionization mass spectrometry analysis with trifluoroacetic and other strong acid modifiers by postcolumn addition of propionic acid and isopropanol. J Am Soc Mass Spectrom 6:1221–1225. https://doi.org/10.1016/1044-0305(95)00571-4

    Article  CAS  PubMed  Google Scholar 

  78. Cottrell JS (1994) Protein identification by peptide mass fingerprinting. Pept Res 7:115–124

    CAS  PubMed  Google Scholar 

  79. Makris DP, Rossiter JT (2002) Effect of natural antioxidants on heat-induced, copper(II)-catalysed, oxidative degradation of quercetin and rutin (quercetin 3-O-rutinoside) in aqueous model systems. J Sci Food Agric 82:1147–1153. https://doi.org/10.1002/jsfa.1159

    Article  CAS  Google Scholar 

  80. Nakamura T, Tanaka R, Ashida H (2011) Possible evidence of contamination by Catechins in deconjugation enzymes from Helix pomatia and Abalone entrails. Biosci Biotechnol Biochem 75:1506–1510. https://doi.org/10.1271/bbb.110210

    Article  CAS  PubMed  Google Scholar 

  81. Kroon PA, Clifford MN, Crozier A et al (2004) How should we assess the effects of exposure to dietary polyphenols in vitro? Am J Clin Nutr 80:15–21

    Article  CAS  PubMed  Google Scholar 

  82. Barron D, Ibrahim RK (1987) Synthesis of flavonoid sulfates: 1. Stepwise sulfation of positions 3, 7, and 4 using N,N′-dicyclohexylcarbodiimide and tetrabutylammonium hydrogen sulfate. Tetrahedron 43:5197–5202. https://doi.org/10.1016/S0040-4020(01)87695-X

    Article  CAS  Google Scholar 

  83. Day AJ, Mellon F, Barron D et al (2001) Human metabolism of dietary flavonoids: identification of plasma metabolites of quercetin. Free Radic Res 35:941–952. https://doi.org/10.1080/10715760100301441

    Article  CAS  PubMed  Google Scholar 

  84. Jones DJL, Jukes-Jones R, Verschoyle RD et al (2005) A synthetic approach to the generation of quercetin sulfates and the detection of quercetin 3′-O-sulfate as a urinary metabolite in the rat. Bioorg Med Chem 13:6727–6731. https://doi.org/10.1016/j.bmc.2005.07.021

    Article  CAS  PubMed  Google Scholar 

  85. Nagle DG, Ferreira D, Zhou Y-D (2006) Epigallocatechin-3-gallate (EGCG): chemical and biomedical perspectives. Phytochemistry 67:1849–1855. https://doi.org/10.1016/j.phytochem.2006.06.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. González-Manzano S, González-Paramás A, Santos-Buelga C, Dueñas M (2009) Preparation and characterization of Catechin sulfates, glucuronides, and methylethers with metabolic interest. J Agric Food Chem 57:1231–1238. https://doi.org/10.1021/jf803140h

    Article  CAS  PubMed  Google Scholar 

  87. Zhang Q, Raheem KS, Botting NP et al (2012) Flavonoid metabolism: the synthesis of phenolic glucuronides and sulfates as candidate metabolites for bioactivity studies of dietary flavonoids. Tetrahedron 68:4194–4201. https://doi.org/10.1016/j.tet.2012.03.100

    Article  CAS  Google Scholar 

  88. Cruz L, Mateus N, de Freitas V (2013) First chemical synthesis report of an anthocyanin metabolite with in vivo occurrence: cyanidin-4′-O-methyl-3-glucoside. Tetrahedron Lett 54:2865–2869. https://doi.org/10.1016/j.tetlet.2013.03.100

    Article  CAS  Google Scholar 

  89. Blount JW, Ferruzzi M, Raftery D et al (2012) Enzymatic synthesis of substituted epicatechins for bioactivity studies in neurological disorders. Biochem Biophys Res Commun 417:457–461. https://doi.org/10.1016/j.bbrc.2011.11.139

    Article  CAS  PubMed  Google Scholar 

  90. Wrighton SA, Vandenbranden M, Stevens JC et al (1993) In vitro methods for assessing human hepatic drug metabolism: their use in drug development. Drug Metab Rev 25:453–484. https://doi.org/10.3109/03602539308993982

    Article  CAS  PubMed  Google Scholar 

  91. Crespy V, Nancoz N, Oliveira M et al (2004) Glucuronidation of the green tea catechins, (−)-epigallocatechin-3-gallate and (−)-epicatechin-3-gallate, by rat hepatic and intestinal microsomes. Free Radic Res 38:1025–1031. https://doi.org/10.1080/10715760410001728424

    Article  CAS  PubMed  Google Scholar 

  92. Rothwell JA, Urpi-Sarda M, Boto-Ordoñez M et al (2016) Systematic analysis of the polyphenol metabolome using the phenol-explorer database. Mol Nutr Food Res 60:203–211. https://doi.org/10.1002/mnfr.201500435

    Article  CAS  PubMed  Google Scholar 

  93. Kim S, Kim J, Yun EJ, Kim KH (2016) Food metabolomics: from farm to human. Curr Opin Biotechnol 37:16–23. https://doi.org/10.1016/j.copbio.2015.09.004

    Article  CAS  PubMed  Google Scholar 

  94. Mülek M, Fekete A, Wiest J et al (2015) Profiling a gut microbiota-generated catechin metabolite’s fate in human blood cells using a metabolomic approach. J Pharm Biomed Anal 114:71–81. https://doi.org/10.1016/j.jpba.2015.04.042

    Article  CAS  PubMed  Google Scholar 

  95. Ramautar R, Somsen GW, de Jong GJ (2015) CE-MS for metabolomics: developments and applications in the period 2012-2014: CE and CEC. Electrophoresis 36:212–224. https://doi.org/10.1002/elps.201400388

    Article  CAS  PubMed  Google Scholar 

  96. Gika HG, Theodoridis GA, Plumb RS, Wilson ID (2014) Current practice of liquid chromatography–mass spectrometry in metabolomics and metabonomics. J Pharm Biomed Anal 87:12–25. https://doi.org/10.1016/j.jpba.2013.06.032

    Article  CAS  PubMed  Google Scholar 

  97. Ritter C, Zimmermann BF, Galensa R (2010) Chiral separation of (+)/(−)-catechin from sulfated and glucuronidated metabolites in human plasma after cocoa consumption. Anal Bioanal Chem 397:723–730. https://doi.org/10.1007/s00216-010-3542-x

    Article  CAS  PubMed  Google Scholar 

  98. Egert S, Tereszczuk J, Wein S et al (2013) Simultaneous ingestion of dietary proteins reduces the bioavailability of galloylated catechins from green tea in humans. Eur J Nutr 52:281–288. https://doi.org/10.1007/s00394-012-0330-8

    Article  CAS  PubMed  Google Scholar 

  99. Gross JH (2013) Massenspektrometrie: ein Lehrbuch. Springer Spektrum, Berlin/Heidelberg

    Book  Google Scholar 

  100. Turker SD, Dunn WB, Wilkie J (2017) MALDI-MS of drugs: profiling, imaging, and steps towards quantitative analysis. Appl Spectrosc Rev 52:73–99. https://doi.org/10.1080/05704928.2016.1207659

    Article  CAS  Google Scholar 

  101. Orrego-Lagarón N, Vallverdú-Queralt A, Martínez-Huélamo M et al (2016) Metabolic profile of naringenin in the stomach and colon using liquid chromatography/electrospray ionization linear ion trap quadrupole-Orbitrap-mass spectrometry (LC-ESI-LTQ-Orbitrap-MS) and LC-ESI-MS/MS. J Pharm Biomed Anal 120:38–45. https://doi.org/10.1016/j.jpba.2015.10.040

    Article  CAS  PubMed  Google Scholar 

  102. Sasot G, Martínez-Huélamo M, Vallverdú-Queralt A et al (2017) Identification of phenolic metabolites in human urine after the intake of a functional food made from grape extract by a high resolution LTQ-Orbitrap-MS approach. Food Res Int 100:435–444. https://doi.org/10.1016/j.foodres.2017.01.020

    Article  CAS  PubMed  Google Scholar 

  103. Chalet C, Hollebrands B, Janssen H-G et al (2018) Identification of phase-II metabolites of flavonoids by liquid chromatography–ion-mobility spectrometry–mass spectrometry. Anal Bioanal Chem 410:471–482. https://doi.org/10.1007/s00216-017-0737-4

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maike Passon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Passon, M. (2019). Dietary Phenolic Compounds in Biological Samples: Current Challenges in Analytical Chemistry. In: Mérillon, JM., Ramawat, K.G. (eds) Bioactive Molecules in Food. Reference Series in Phytochemistry. Springer, Cham. https://doi.org/10.1007/978-3-319-78030-6_19

Download citation

Publish with us

Policies and ethics