Skip to main content

A Secure, Green and Optimized Authentication and Key Agreement Protocol for IMS Network

  • Conference paper
  • First Online:
Trends and Advances in Information Systems and Technologies (WorldCIST'18 2018)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 746))

Included in the following conference series:

  • 4135 Accesses

Abstract

IP multimedia subsystem (IMS) is a prominent architectural framework for multimedia services delivery in 4G/5G networks. Authentication is a critical security mechanism which accords authorized users access to these services. As defined by 3rd Generation Partnership Projects (3GPP), IMS- Authentication and Key Agreement protocol (IMS-AKA) is the official authentication procedure in IMS. However, the procedure is prone to different weaknesses both on security (disclosure of identities) and performances (complexity) aspects. This paper proposes an IMS-AKA+ protocol that addresses effectively user’s identities protection by using a key-less cryptography. Furthermore, the proposed algorithm significantly reduces the authentication process complexity due to the use of Elliptic Curve Cryptography (ECC). Simulations were carried out for the IMS-AKA+ protocol and the original IMS-AKA protocol. The results showed that using IMS-AKA+ reduces of up to 28% authentication time is possible, and a saving of 53% of the storage space occurs with an increased security and less energy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Vrakas, N., Geneiatakis, D., Lambrinoudakis, C.: Obscuring users’ identity in VoIP/IMS environments. Comput. Secur. 43, 145–158 (2014)

    Article  Google Scholar 

  2. Srinivasan, R., Vaidehi, V., Harish, K., Lakshmi Narasimhan, K., Lokeshwer Babu, S., Srikanth, V.: Authentication of signaling in VOIP application. In: APCC, Perth, Australia, October 2005

    Google Scholar 

  3. Yoon, E., Yoo, K.: A three-factor authenticated key agreement scheme for SIP on elliptic curves. In: Fourth International Conference on Network and System Security, pp. 334–339 (2010)

    Google Scholar 

  4. Huang, C., Li, C.: Authentication and key agreement protocol for UMTS with low bandwidth consumption. In: International Conference AINA, pp. 392–397 (2005)

    Google Scholar 

  5. Al-Saraireh, J., Yousef, S.: A new authentication protocol for UMTS mobile networks. EURASIP J. Wirel. Commun. Netw. 2006, 1–10 (2006). https://doi.org/10.1155/WCN/2006/98107. Article ID 98107

    Article  MATH  Google Scholar 

  6. Karopoulos, G., Kambourakis, G., Gritzalis, S., Kanstantinou, E.: A framework for identity privacy in SIP. J. Netw. Comput. Appl. 33(1), 16–28 (2010)

    Article  Google Scholar 

  7. Karopoulos, G., Kambourakis, G., Gritzalis, S.: Caller identity privacy in SIP heterogenous realms: a practical solution. In: IEEE Symposium, ISCC, pp. 37–43 (2008)

    Google Scholar 

  8. Ramsdell, B.: RFC 2633: S/MIME version 3 message specification (1999)

    Google Scholar 

  9. 3GPP: 3G security: access security for IP-based services. TS 33.203, Release 5 (2002)

    Google Scholar 

  10. Boman, K., Horn, G., Howard, P., Niemi, V.: UMTS security. Electron. Commun. Eng. J. 14(5), 191–204 (2002)

    Article  Google Scholar 

  11. Menezes, A.: Evaluation of security level of cryptography: the elliptic curve discrete logarithm problem (ECDLP), University of Waterloo (2001)

    Google Scholar 

  12. Mccurley, K.S.: The discrete logarithm problem. In: Proceedings of Symposium in Applied Mathematics, pp. 49–74 (1990)

    Google Scholar 

  13. Armando, A., et al.: The AVISPA tool for the automated validation of internet security protocols and applications. In: Etessami, K., Rajamani, S. (eds.) 17th International Conference on Computer Aided Verification, Edinburgh, Scotland, vol. 3576, pp. 281–285 (2005)

    Chapter  Google Scholar 

  14. The AVISPA Team: HLPSL tutorial - a beginner’s guide to modelling and analysing internet security protocols (2006)

    Google Scholar 

  15. Potlapally, N.R., Ravi, S., Raghunathan, A., Jha, N.K.: A study of the energy consumption characteristics of cryptographic algorithms and security protocols. IEEE Trans. Mob. Comput. 5, 128–143 (2006)

    Article  Google Scholar 

  16. Chiang, W., Lin, P.: Certificate-based IP multimedia subsystem authentication and key agreement. In: 13th International Conference on Information Technology, Information Technology: New Generations, p. 177. Springer (2016)

    Google Scholar 

  17. Mallem, S., Yahiaoui, C., Zemmache, A.: A new authentication and key agreement protocol for SIP in IMS. In: 12th International Conference of Computer Systems and Applications (AICCSA). IEEE (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Saliha Mallem or Chafia Yahiaoui .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mallem, S., Yahiaoui, C. (2018). A Secure, Green and Optimized Authentication and Key Agreement Protocol for IMS Network. In: Rocha, Á., Adeli, H., Reis, L., Costanzo, S. (eds) Trends and Advances in Information Systems and Technologies. WorldCIST'18 2018. Advances in Intelligent Systems and Computing, vol 746. Springer, Cham. https://doi.org/10.1007/978-3-319-77712-2_106

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-77712-2_106

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-77711-5

  • Online ISBN: 978-3-319-77712-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics