Skip to main content

Stochastic Models of Higher Order Dielectric Responses

  • Chapter
  • First Online:
Nonlinear Dielectric Spectroscopy

Part of the book series: Advances in Dielectrics ((ADVDIELECT))

Abstract

The nonlinear response for systems exhibiting Markovian stochastic dynamics is calculated using time-dependent perturbation theory for the Green’s function, the conditional probability to find the system in a given configuration at a certain time given it was in another configuration at an earlier time. In general, the Green’s function obeys a so-called master-equation for the balance of the gain and loss of probability in the various configurations of the system. Using various models for the reorientational motion of molecules it is found that the scaled modulus of the third-order response, \(X_3\), shows a hump-like behavior for random rotational motion in some cases and it exhibits “trivial” behavior, a monotonuos decay from a finite zero-frequency value to a vanishing high-frequency limit, if the model of isotropic rotational diffusion is considered. For the time-honored model of dipole reorientations in an asymmetric double-well potential, it is found that \(X_3\) exhibits a peak in a certain temperature range around a characteristic temperature at which the zero-frequency limit vanishes. The fifth-order modulus \(X_5\) shows hump-like behavior in two distinct temperature regimes located at temperatures, where \(X_3\) behaves trivially. For a trap model with a Gaussian density of states, a model that exhibits some features of glassy relaxation, both nonlinear response functions can exhibit either trivial or hump-like behavior depending on the specific choice for some model parameters. The height of the peak shows various temperature dependencies from increasing with temperature, decreasing or a temperature-independent behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. F. Kremer, A.E. Schönhals, Broadband Dielectric Spectroscopy (Springer, Berlin, 2002)

    Google Scholar 

  2. P. Lunkenheimer, U. Schneider, R. Brand, A. Loidl, Contemp. Phys. 41, 15 (2000)

    Article  CAS  Google Scholar 

  3. R. Richert, Adv. Chem. Phys. 156, 101 (2014)

    Google Scholar 

  4. R. Böhmer, R. Chamberlin, G. Diezemann, B. Geil, A. Heuer, G. Hinze, S. Kübler, R. Richert, B. Schiener, H. Sillescu, H. Spiess, U. Tracht, M. Wilhelm, J. Non-Cryst, Solids 235–237, 1 (1998)

    Google Scholar 

  5. M. Ediger, Annu. Rev. Phys. Chem. 51, 99 (2000)

    Article  CAS  PubMed  Google Scholar 

  6. E.V. Russell, N.E. Israeloff, Nature 408, 695 (2000)

    Article  CAS  Google Scholar 

  7. R. Richert, J. Phys.: Cond. Matter 14, R703 (2002)

    CAS  Google Scholar 

  8. K. Schmidt-Rohr, H. Spiess, Phys. Rev. Lett. 66, 3020 (1991)

    Article  CAS  PubMed  Google Scholar 

  9. A. Heuer, M. Wilhelm, H. Zimmermann, H. Spiess, Phys. Rev. Lett. 75, 2851 (1995)

    Article  CAS  PubMed  Google Scholar 

  10. R. Böhmer, G. Hinze, G. Diezemann, B. Geil, H. Sillescu, Europhys. Lett. 36, 55 (1996)

    Article  Google Scholar 

  11. B. Schiener, R. Böhmer, A. Loidl, R. Chamberlin, Science 274, 752 (1996)

    Article  CAS  Google Scholar 

  12. B. Schiener, R. Chamberlin, G. Diezemann, R. Böhmer, J. Chem. Phys. 107, 7746 (1997)

    Article  CAS  Google Scholar 

  13. R.V. Chamberlin, Phys. Rev. Lett. 83, 5134 (1999)

    Article  CAS  Google Scholar 

  14. X. Shi, G.B. McKenna, Phys. Rev. B 73, 1 (2006)

    Google Scholar 

  15. J. Bouchaud, G. Biroli, Phys. Rev. B 72, 064204 (2005)

    Article  CAS  Google Scholar 

  16. R. Richert, J. Phys.: Cond. Matter 29, 363001 (2017)

    Google Scholar 

  17. C. Crauste-Thibierge, C. Brun, F. Ladieu, D. L’Hote, G. Biroli, J.-P. Bouchaud, Phys. Rev. Lett. 104, 165703 (2010)

    Article  CAS  PubMed  Google Scholar 

  18. C. Brun, F. Ladieu, D. L’Hote, M. Tarzia, G. Biroli, J.P. Bouchaud, Phys. Rev. B 84, 104204 (2011)

    Article  CAS  Google Scholar 

  19. R. Richert, S. Weinstein, Phys. Rev. Lett. 97, 095703 (2006)

    Article  CAS  PubMed  Google Scholar 

  20. S. Weinstein, R. Richert, Phys. Rev. B 75, 064302 (2007)

    Article  CAS  Google Scholar 

  21. S. Rzoska, A. Drozd-Rzoska, J. Phys.: Cond. Matter 24, 035101 (2012)

    Google Scholar 

  22. M. Tarzia, G. Biroli, A. Lefevre, J.-P. Bouchaud, J. Chem. Phys. 132, 054501 (2010)

    Article  CAS  PubMed  Google Scholar 

  23. F. Ladieu, C. Brun, D. L’hôte, Phys. Rev. B 85, 184207 (2012)

    Google Scholar 

  24. U. Buchenau, J. Chem. Phys. 146 (2017)

    Article  CAS  PubMed  Google Scholar 

  25. J. Dejardin, Y. Kalmykov, Phys. Rev. E 61, 1211 (2000)

    Article  CAS  Google Scholar 

  26. S. Albert, T. Bauer, M. Michl, G. Biroli, J.P. Bouchaud, A. Loidl, P. Lunkenheimer, R. Tourbot, C. Wiertel-Gasquet, F. Ladieu, Science 352, 1308 (2016)

    Article  CAS  PubMed  Google Scholar 

  27. G. Diezemann, Phys. Rev. E 85, 051502 (2012)

    Article  CAS  Google Scholar 

  28. G. Diezemann, Phys. Rev. E 96, 022150 (2017)

    Article  PubMed  Google Scholar 

  29. A. Morita, Phys. Rev. A 34, 1499 (1986)

    Article  CAS  Google Scholar 

  30. J. Dejardin, G. Debiais, Adv. Chem. Phys. 91, 241 (1995)

    CAS  Google Scholar 

  31. Y. Kalmykov, Phys. Rev. E 65, 021101 (2001)

    Article  CAS  Google Scholar 

  32. P.M. Déjardin, F. Ladieu, J. Chem. Phys. 140, 034506 (2014)

    Article  CAS  PubMed  Google Scholar 

  33. N. van Kampen, Stochastic Processes in Physics and Chemistry (North-Holland, Amsterdam, 1981)

    Google Scholar 

  34. H. Risken, The Fokker-Planck Equation (Springer, Berlin, 1989)

    Book  Google Scholar 

  35. G. Gardiner, Handbook of Statistical Methods for Physics, Chemistry and Natural Sciences (Springer, Berlin, 1997)

    Google Scholar 

  36. D.T. Gillespie, Markov Processes (Academic Press, San Diego, 1992)

    Google Scholar 

  37. G. Diezemann, H. Sillescu, J. Chem. Phys. 111, 1126 (1999)

    Article  CAS  Google Scholar 

  38. R. Böhmer, G. Diezemann, G. Hinze, E.A. Roessler, Prog. Nucl. Magn. Reson. Spectrosc. 39, 191 (2001)

    Article  Google Scholar 

  39. A. Kivelson, S. Kivelson, J. Chem. Phys. 90, 4464 (1989)

    Article  CAS  Google Scholar 

  40. L. Alessi, L. Andreozzi, M. Faetti, D. Liporini, J. Chem. Phys. 114, 3631 (2001)

    Article  CAS  Google Scholar 

  41. G. Diezemann, J. Chem. Phys. 107, 10112 (1997)

    Article  CAS  Google Scholar 

  42. G. Diezemann, H. Sillescu, G. Hinze, R. Böhmer, Phys. Rev. E 57, 4398 (1998)

    Article  CAS  Google Scholar 

  43. G. Diezemann, R. Böhmer, G. Hinze, H. Sillescu, J. Non-Cryst, Solids 235–237, 121 (1998)

    Google Scholar 

  44. R. Böhmer, G. Diezemann, Broadband Dielectric Spectroscopy (Springer, Berlin, 2002)

    Google Scholar 

  45. K. Schulten, Z. Schulten, A. Szabo, J. Chem. Phys. 74, 4426 (1981)

    Article  CAS  Google Scholar 

  46. J. Dyre, Phys. Rev. B 51, 12276 (1995)

    Article  CAS  Google Scholar 

  47. C. Monthus, J. Bouchaud, J. Phys. A: Math. Gen. 29, 3847 (1996)

    Article  CAS  Google Scholar 

  48. R. Denny, D. Reichman, J. Bouchaud, Phys. Rev. Lett. 90, 025503 (2003)

    Article  CAS  PubMed  Google Scholar 

  49. G. Diezemann, J. Phys.: Cond. Mat. 19, 205107 (2007)

    Google Scholar 

  50. C. Rehwald, N. Gnan, A. Heuer, T. Schrøder, J. Dyre, G. Diezemann. Phys. Rev. E 82, 021503 (2010)

    Google Scholar 

  51. A. Heuer, J. Phys.: Cond. Matter 20, 373101 (2008)

    Google Scholar 

  52. N. Agmon, J. Hopfield, J. Chem. Phys. 78, 6947 (1983)

    Article  CAS  Google Scholar 

  53. G. Diezemann, Europhys. Lett. 53, 604 (2001)

    Article  CAS  Google Scholar 

  54. A. Crisanti, F. Ritort, J. Phys. A: Math. Gen. 36, R181 (2003)

    Article  CAS  Google Scholar 

  55. G. Diezemann, Phys. Rev. E 72, 011104 (2005)

    Article  CAS  Google Scholar 

  56. S. Fielding, P. Sollich, Phys. Rev. Lett. 88, 050603 (2002)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Useful discussions with Roland Böhmer, Gerald Hinze, Francois Ladieu, and Jeppe Dyre are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregor Diezemann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Diezemann, G. (2018). Stochastic Models of Higher Order Dielectric Responses. In: Richert, R. (eds) Nonlinear Dielectric Spectroscopy. Advances in Dielectrics. Springer, Cham. https://doi.org/10.1007/978-3-319-77574-6_3

Download citation

Publish with us

Policies and ethics