Skip to main content

Prediction with Recurrent Neural Networks in Evolutionary Dynamic Optimization

  • Conference paper
  • First Online:
Applications of Evolutionary Computation (EvoApplications 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10784))

Abstract

Evolutionary algorithms (EAs) are a good choice to solve dynamic optimization problems. Objective functions changing over time are challenging because after a change the EA has to adapt its population to find the new optimum. Prediction techniques that estimate the position of the next optimum can be incorporated into the EA. After a change, the predicted optimum can be employed to move the EA’s population to a promising region of the solution space in order to accelerate convergence and improve accuracy in tracking the optimum. In this paper we introduce a recurrent neural network-based prediction approach. In an experimental study on the Moving Peaks Benchmark and dynamic variants of the Sphere, Rosenbrock, and Rastrigin functions we compare it to an autoregressive prediction approach and an EA without prediction. The results show the competitiveness of our approach and its suitability especially for repeated optima.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://keras.io/.

  2. 2.

    http://www.statsmodels.org/0.6.1/vector_ar.html.

References

  1. Nguyen, T.T.: Continuous dynamic optimization using evolutionary algorithms. Ph.D. thesis, University of Birmingham (2011). http://etheses.bham.ac.uk/1296/

  2. Simões, A., Costa, E.: Prediction in evolutionary algorithms for dynamic environments. Soft Comput. 18(8), 1471–1497 (2014). https://doi.org/10.1007/s00500-013-1154-z

    Article  Google Scholar 

  3. Nguyen, T.T., Yang, S., Branke, J.: Evolutionary dynamic optimization: a survey of the state of the art. Swarm Evol. Comput. 6, 1–24 (2012)

    Article  Google Scholar 

  4. Ben-Romdhane, H., Alba, E., Krichen, S.: Best practices in measuring algorithm performance for dynamic optimization problems. Soft Comput. 17(6), 1005–1017 (2013). https://doi.org/10.1007/s00500-013-0989-7

    Article  Google Scholar 

  5. Cruz, C., González, J.R., Pelta, D.A.: Optimization in dynamic environments: a survey on problems, methods and measures. Soft. Comput. 15(7), 1427–1448 (2011). https://doi.org/10.1007/s00500-010-0681-0

    Article  Google Scholar 

  6. Simões, A., Costa, E.: Improving prediction in evolutionary algorithms for dynamic environments. In: Genetic and Evolutionary Computation Conference (GECCO), pp. 875–882 (2009)

    Google Scholar 

  7. Rossi, C., Abderrahim, M., Díaz, J.C.: Tracking moving optima using kalman-based predictions. Evol. Comput. 16(1), 1–30 (2008)

    Article  Google Scholar 

  8. Hatzakis, I., Wallace, D.: Dynamic multi-objective optimization with evolutionary algorithms: a forward-looking approach. In: Genetic and Evolutionary Computation Conference (GECCO), pp. 1201–1208 (2006). http://doi.acm.org/10.1145/1143997.1144187

  9. Hyndman, R.J., Athanasopoulos, G.: Forecasting: principles and practice. OTexts: Melbourne, Australia (2013). http://otexts.org/fpp/. Accessed 04 Nov 2017

  10. Neumaier, A., Schneider, T.: Estimation of parameters and eigenmodes of multivariate autoregressive models. ACM Trans. Math. Softw. (TOMS) 27(1), 27–57 (2001)

    Article  MATH  Google Scholar 

  11. Rojas, R.: Neural Networks: A Systematic Introduction. Springer, Heidelberg (1996). https://doi.org/10.1007/978-3-642-61068-4

    Book  MATH  Google Scholar 

  12. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997). https://doi.org/10.1162/neco.1997.9.8.1735

    Article  Google Scholar 

  13. Beyer, H.G., Schwefel, H.P.: Evolution strategies – a comprehensive introduction. Nat. Comput. 1(1), 3–52 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  14. Branke, J.: Memory enhanced evolutionary algorithms for changing optimization problems. In: Congress on Evolutionary Computation (CEC), pp. 1875–1882 (1999)

    Google Scholar 

  15. Kramer, O.: Machine Learning for Evolution Strategies. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-319-33383-0

    Book  Google Scholar 

Download references

Acknowledgments

This research is funded by the German Research Foundation through the Research Training Group SCARE – System Correctness under Adverse Conditions (DFG-GRK 1765), www.scare.uni-oldenburg.de.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Almuth Meier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Meier, A., Kramer, O. (2018). Prediction with Recurrent Neural Networks in Evolutionary Dynamic Optimization. In: Sim, K., Kaufmann, P. (eds) Applications of Evolutionary Computation. EvoApplications 2018. Lecture Notes in Computer Science(), vol 10784. Springer, Cham. https://doi.org/10.1007/978-3-319-77538-8_56

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-77538-8_56

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-77537-1

  • Online ISBN: 978-3-319-77538-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics