Skip to main content

Evolving a Repertoire of Controllers for a Multi-function Swarm

  • Conference paper
  • First Online:
Applications of Evolutionary Computation (EvoApplications 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10784))

Abstract

Automated design of swarm behaviors with a top-down approach is a challenging research question that has not yet been fully addressed in the robotic swarm literature. This paper seeks to explore the possibility of using an evolutionary algorithm to evolve, rather than hand code, a wide repertoire of behavior primitives enabling more effective control of a large group or swarm of unmanned systems. We use the MAP-elites algorithm to generate a repertoire of controllers with varying abilities and behaviors allowing the swarm to adapt to user-defined preferences by selection of a new appropriate controller. To test the proposed method we examine two example applications: perimeter surveillance and network creation. Perimeter surveillance require agents to explore, while network creation requires them to disperse without losing connectivity. These are distinct application that have drastically different requirements on agent behavior, and are a good benchmark for our swarm controller optimization framework. We show a performance comparison between a simple weighted controller and a parametric controller. Evolving controllers allows for specifying desired behaviors top-down, in terms of objectives to solve, rather than bottom-up.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://github.com/ForsvaretsForskningsinstitutt/Paper-towards-multi-function-swarm.

References

  1. Gross, R., Dorigo, M.: Towards group transport by swarms of robots. Int. J. Bio-Inspired Comput. 1(1–2), 1–13 (2009)

    Article  Google Scholar 

  2. Mitri, S., Floreano, D., Keller, L.: The evolution of information suppression in communicating robots with conflicting interests. Proc. Natl. Acad. Sci. 106(37), 15786–15790 (2009)

    Article  Google Scholar 

  3. Ducatelle, F., Di Caro, G.A., Gambardella, L.M.: Cooperative self-organization in a heterogeneous swarm robotic system. In: Proceedings of the 12th Annual Conference on Genetic and Evolutionary Computation, pp. 87–94. ACM (2010)

    Google Scholar 

  4. Duarte, M., Costa, V., Gomes, J., Rodrigues, T., Silva, F., Oliveira, S.M., Christensen, A.L.: Evolution of collective behaviors for a real swarm of aquatic surface robots. PLoS ONE 11(3), e0151834 (2016)

    Article  Google Scholar 

  5. Krupke, D., Ernestus, M., Hemmer, M., Fekete, S.P.: Distributed cohesive control for robot swarms: maintaining good connectivity in the presence of exterior forces. In: 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 413–420. IEEE (2015)

    Google Scholar 

  6. Duarte, M., Oliveira, S.M., Christensen, A.L.: Hybrid control for large swarms of aquatic drones. In: Proceedings of the 14th International Conference on the Synthesis & Simulation of Living Systems, pp. 785–792. MIT Press, Cambridge (2014)

    Google Scholar 

  7. Nolfi, S., Bongard, J.C., Husbands, P., Floreano, D.: Evolutionary Robotics (2016)

    Google Scholar 

  8. Cully, A., Clune, J., Tarapore, D., Mouret, J.B.: Robots that can adapt like animals. Nature 521(7553), 503–507 (2015)

    Article  Google Scholar 

  9. Berman, S., Halász, Á., Hsieh, M.A., Kumar, V.: Optimized stochastic policies for task allocation in swarms of robots. IEEE Trans. Rob. 25(4), 927–937 (2009)

    Article  Google Scholar 

  10. Schrum, J., Miikkulainen, R.: Evolving multimodal networks for multitask games. IEEE Trans. Comput. Intell. AI Games 4(2), 94–111 (2012)

    Article  Google Scholar 

  11. Schrum, J., Miikkulainen, R.: Evolving multimodal behavior with modular neural networks in Ms. Pac-Man. In: Proceedings of the 2014 Annual Conference on Genetic and Evolutionary Computation, pp. 325–332. ACM (2014)

    Google Scholar 

  12. Ellefsen, K.O., Mouret, J.B., Clune, J.: Neural modularity helps organisms evolve to learn new skills without forgetting old skills. PLoS Comput. Biol. 11(4), e1004128 (2015)

    Article  Google Scholar 

  13. Basilico, N., Carpin, S.: Deploying teams of heterogeneous UAVs in cooperative two-level surveillance missions. In: 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 610–615. IEEE (2015)

    Google Scholar 

  14. Hauert, S., Zufferey, J.C., Floreano, D.: Evolved swarming without positioning information: an application in aerial communication relay. Auton. Robots 26(1), 21–32 (2009)

    Article  Google Scholar 

  15. Balch, T., Arkin, R.C.: Behavior-based formation control for multirobot teams. IEEE Trans. Robot. Autom. 14(6), 926–939 (1998)

    Article  Google Scholar 

  16. Spears, W.M., Spears, D.F., Heil, R., Kerr, W., Hettiarachchi, S.: An overview of physicomimetics. In: Şahin, E., Spears, W.M. (eds.) SR 2004. LNCS, vol. 3342, pp. 84–97. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-30552-1_8

    Chapter  Google Scholar 

  17. Vadakkepat, P., Tan, K.C., Ming-Liang, W.: Evolutionary artificial potential fields and their application in real time robot path planning. In: Proceedings of the 2000 Congress on Evolutionary Computation, vol. 1, pp. 256–263. IEEE (2000)

    Google Scholar 

  18. Park, M.G., Jeon, J.H., Lee, M.C.: Obstacle avoidance for mobile robots using artificial potential field approach with simulated annealing. In: Proceedings of the IEEE International Symposium on Industrial Electronics, ISIE 2001, vol. 3, pp. 1530–1535. IEEE (2001)

    Google Scholar 

  19. Lee, M.C., Park, M.G.: Artificial potential field based path planning for mobile robots using a virtual obstacle concept. In: Proceedings of 2003 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, AIM 2003, vol. 2, pp. 735–740. IEEE (2003)

    Google Scholar 

  20. Mouret, J.B., Clune, J.: Illuminating search spaces by mapping elites. arXiv preprint arXiv:1504.04909 (2015)

  21. Duarte, M., Oliveira, S., Christensen, A.L.: Hierarchical evolution of robotic controllers for complex tasks. In: 2012 IEEE International Conference on Development and Learning and Epigenetic Robotics (ICDL), pp. 1–6. IEEE (2012)

    Google Scholar 

  22. Duarte, M., Oliveira, S.M., Christensen, A.L.: Evolution of hybrid robotic controllers for complex tasks. J. Intell. Robot. Syst. 78(3–4), 463 (2015)

    Article  Google Scholar 

  23. Uchibe, E., Asada, M.: Incremental coevolution with competitive and cooperative tasks in a multirobot environment. Proc. IEEE 94(7), 1412–1424 (2006)

    Article  Google Scholar 

  24. Mouret, J.B., Doncieux, S.: Incremental evolution of animats behaviors as a multi-objective optimization. From Anim. Animats 10, 210–219 (2008)

    Google Scholar 

  25. Tarapore, D., Clune, J., Cully, A., Mouret, J.B.: How do different encodings influence the performance of the map-elites algorithm? In: Genetic and Evolutionary Computation Conference (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sondre A. Engebråten .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Engebråten, S.A., Moen, J., Yakimenko, O., Glette, K. (2018). Evolving a Repertoire of Controllers for a Multi-function Swarm. In: Sim, K., Kaufmann, P. (eds) Applications of Evolutionary Computation. EvoApplications 2018. Lecture Notes in Computer Science(), vol 10784. Springer, Cham. https://doi.org/10.1007/978-3-319-77538-8_49

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-77538-8_49

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-77537-1

  • Online ISBN: 978-3-319-77538-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics