Skip to main content

Content Adaptive Constraint Based Image Upsampling

  • Conference paper
  • First Online:
Advances in Multimedia Information Processing – PCM 2017 (PCM 2017)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 10736))

Included in the following conference series:

  • 2322 Accesses

Abstract

In this paper, we present a novel image upsampling method within a two-stage framework to reconstruct different image content (large-scale edges and small-scale structures). First, we utilize a total variation (TV) filter for image decomposition which decomposes an image content into structure component and texture component. In the first stage, the structure component is enhanced by a shock filter and an improved non-local means filter, then combines with the texture component to generate initial high-resolution (HR) image. In the second stage, the gradient of initial HR image is regarded as an edge preserving constraint to reconstruct the texture component. Experimental results demonstrate that the new approach can reconstruct faithfully the HR images with sharp edges and texture structures, and annoying artifacts (blurring, jaggies, ringing, etc.) are greatly suppressed. It outperforms the state-of-the-art approaches, based on subjective and objective evaluations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Keys, R.: Cubic convolution interpolation for digital image processing. IEEE Trans. Acoust. Speech Signal Process. (2003)

    Google Scholar 

  2. Zhang, L., Wu, X.: An edge-guided image interpolation algorithm via directional filtering and data fusion. IEEE Trans. Image Process. 15, 2226–2238 (2006)

    Article  Google Scholar 

  3. Li, X., Orchard, M.T.: New edge-directed interpolation. IEEE Trans. Image Process. 10, 1521–1527 (2001)

    Article  Google Scholar 

  4. Zhang, X., Wu, X.: Image interpolation by adaptive 2-D autoregressive modeling and soft-decision estimation. IEEE Trans. Image Process. 17, 887–896 (2008)

    Article  MathSciNet  Google Scholar 

  5. Hung, K.W., Siu, W.C.: Robust soft-decision interpolation using weighted least squares. IEEE Trans. Image Process. 21, 1061–1069 (2012)

    Article  MathSciNet  Google Scholar 

  6. Baker, S., Kanade, T.: Limits on super-resolution and how to break them. IEEE Trans. Pattern Anal. Mach. Intell. 24, 1167–1183 (2002)

    Article  Google Scholar 

  7. Aly, H.A., Dubois, E.: Image up-sampling using total-variation regularization with a new observation model. IEEE Trans. Image Process. 14, 1647–1659 (2005)

    Article  Google Scholar 

  8. Saito, T., Komatsu, T.: Image-processing approach based on nonlinear image-decomposition. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 92, 696–707 (2009)

    Article  Google Scholar 

  9. Sakurai, M., Sakuta, Y., Watanabe, M., Goto, T., Hirano, S.: Super-resolution through non-linear enhancement filters. In: IEEE International Conference on Image Processing (2013)

    Google Scholar 

  10. Sun, J., Sun, J., Xu, Z., Shum, H.Y.: Gradient profile prior and its applications in image super-resolution and enhancement. IEEE Trans. Image Process. 20, 1529–1542 (2011)

    Article  MathSciNet  Google Scholar 

  11. Wang, L., Wu, H., Pan, C.: Fast image upsampling via the displacement field. IEEE Trans. Image Process. 23, 5123–5135 (2014)

    Article  MathSciNet  Google Scholar 

  12. Yang, J., Wright, J., Huang, T.S., Ma, Y.: Image Super-Resolution Via Sparse Representation. IEEE Trans. Image Process. 19, 2861–2873 (2010)

    Article  MathSciNet  Google Scholar 

  13. Wada, Y., Ogata, A., Kubota, T.: Total variation based image cartoon-texture decomposition. SIAM J. Multiscale Model. Simul. (2005)

    Google Scholar 

  14. Yin, W., Goldfarb, D., Osher, S.: A comparison of three total variation based texture extraction models. J. Vis. Commun. Image Represent. 18, 240–252 (2007)

    Article  Google Scholar 

  15. Aujol, J.F., Gilboa, G., Chan, T., Osher, S.: Structure-texture image decomposition-modeling, algorithms, and parameter selection. Int. J. Comput. Vis. 67, 111–136 (2006)

    Article  Google Scholar 

  16. Osher, S., Rudin, L.I.: Feature-oriented image enhancement using shock filters. Soc. Ind. Appl. Math. 27, 919–940 (1990)

    MATH  Google Scholar 

  17. Alvarez, L., Mazorra, L.: Signal and image restoration using shock filters and anisotropic diffusion. SIAM J. Numer. Anal. 31, 590–605 (1994)

    Article  MathSciNet  Google Scholar 

  18. Buades, A., Coll, B., Morel, J.F.M.: A non-local algorithm for image denoising. In: IEEE Conference on Computer Vision and Pattern Recognition (2005)

    Google Scholar 

  19. Mccarthy, E., Balado, F., Slvestre, G.C.M., Hurley, N.J.: A framework for soft hashing and its application to robust image hashing. In: IEEE International Conference on Image Processing (2004)

    Google Scholar 

  20. Yoshikawa, A., Suzuki, S., Goto, T., Hirano, S.: Super resolution image reconstruction using total variation regularization and learning-based method. In: IEEE International Conference on Image Processing (2010)

    Google Scholar 

  21. Freedman, G., Fattal, R.: Image and video upscaling from local self-examples. ACM Trans. Graph. 30, 12 (2011)

    Article  Google Scholar 

  22. Lu, X., Yuan, H., Yan, P., Yuan, Y.: Geometry constrained sparse coding for single image super-resolution. In: IEEE Conference on Computer Vision and Pattern Recognition (2012)

    Google Scholar 

  23. Dong, C., Chen, C.L., He, K., Tang, X.: Image super-resolution using deep convolutional networks. IEEE Trans. Pattern Anal. Mach. Intell. 38, 295–307 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

This work is partially supported by the National High Technology Research and Development Program of China (863 Program) under contract No. 2015AA015903, the National Science Foundation of China (61421062, 61502013), the Major National Scientific Instrument and Equipment Development Project of China under contract No. 2013YQ030967.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huizhu Jia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yang, F., Jia, H., Xie, D., Chen, R., Gao, W. (2018). Content Adaptive Constraint Based Image Upsampling. In: Zeng, B., Huang, Q., El Saddik, A., Li, H., Jiang, S., Fan, X. (eds) Advances in Multimedia Information Processing – PCM 2017. PCM 2017. Lecture Notes in Computer Science(), vol 10736. Springer, Cham. https://doi.org/10.1007/978-3-319-77383-4_81

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-77383-4_81

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-77382-7

  • Online ISBN: 978-3-319-77383-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics