Skip to main content

Structure of Yeast Nuclear Pore Complexes

  • Chapter
  • First Online:
Nuclear-Cytoplasmic Transport

Part of the book series: Nucleic Acids and Molecular Biology ((NUCLEIC,volume 33))

Abstract

Nuclear pore complexes (NPCs) are large protein complex assemblies by about 30 different proteins, called nucleoporins (Nups), embedded in the nuclear envelope. Most of transport of molecules between cytoplasm and nucleus occurs through the NPCs. The research of yeast and vertebrate NPC structure made big progress in the past decades. This chapter first reviews recent advances of NPC structure and architecture by electron microscopy and super-resolution and then further overviews the progress of NPC structure and dynamic in living yeast cells by a single molecular detection approach called single-point edge-excitation sub-diffraction (SPEED) microscopy. In the last section, we will discuss the perspective about the structure of yeast NPCs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aitchison JD, Rout MP (2012) The yeast nuclear pore complex and transport through it. Genetics 190:855–883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aitchison JD, Rout MP, Marelli M, Blobel G, Wozniak RW (1995) 2 novel related yeast nucleoporins Nup170P and Nup157P – complementation with the vertebrate homolog Nup155P and functional interactions with the yeast nuclear pore-membrane protein POM152P. J Cell Biol 131:1133–1148

    Article  CAS  PubMed  Google Scholar 

  • Alber F, Dokudovskaya S, Veenhoff LM, Zhang W, Kipper J, Devos D, Suprapto A, Karni-Schmidt O, Williams R, Chait BT et al (2007) Determining the architectures of macromolecular assemblies. Nature 450:683–694

    Article  CAS  PubMed  Google Scholar 

  • Anderson TM, Clay MC, Cioffi AG, Diaz KA, Hisao GS, Tuttle MD, Nieuwkoop AJ, Comellas G, Maryum N, Wang S et al (2014) Amphotericin forms an extramembranous and fungicidal sterol sponge. Nat Chem Biol 10:400–406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brohawn SG, Partridge JR, Whittle JRR, Schwartz TU (2009) The nuclear pore complex has entered the atomic age. Structure 17:1156–1168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bui KH, von Appen A, DiGuilio AL, Ori A, Sparks L, Mackmull MT, Bock T, Hagen W, Andres-Pons A, Glavy JS et al (2013) Integrated structural analysis of the human nuclear pore complex scaffold. Cell 155:1233–1243

    Article  CAS  PubMed  Google Scholar 

  • Chang HC, Kaiser CM, Hartl FU, Barral JM (2005) De novo folding of GFP fusion proteins: high efficiency in eukaryotes but not in bacteria. J Mol Biol 353:397–409

    Article  CAS  PubMed  Google Scholar 

  • Cronshaw JA, Krutchinsky AN, Zhang WZ, Chait BT, Matunis MJ (2002) Proteomic analysis of the mammalian nuclear pore complex. J Cell Biol 158:915–927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • D’Angelo MA, Raices M, Panowski SH, Hetzer MW (2009) Age-dependent deterioration of nuclear pore complexes causes a loss of nuclear integrity in postmitotic cells. Cell 136:284–295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Lichtenberg U, Jensen LJ, Brunak S, Bork P (2005) Dynamic complex formation during the yeast cell cycle. Science 307:724–727

    Article  CAS  PubMed  Google Scholar 

  • Fabre E, Hurt E (1997) Yeast genetics to dissect the nuclear pore complex and nucleocytoplasmic trafficking. Annu Rev Genet 31:277–313

    Article  CAS  PubMed  Google Scholar 

  • Finan K, Raulf A, Heilemann M (2015) A set of homo-oligomeric standards allows accurate protein counting. Angew Chem Int Ed 54:12049–12052

    Article  CAS  Google Scholar 

  • Franke WW (1966) Isolated nuclear membranes. J Cell Biol 31:619–623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghaemmaghami S, Huh WK, Bower K, Howson RW, Belle A, Dephoure N, O’Shea EK, Weissman JS (2003) Global analysis of protein expression in yeast. Nature 425:737–741

    Article  CAS  PubMed  Google Scholar 

  • Griffis ER, Altan N, Lippincott-Schwartz J, Powers MA (2002) Nup98 is a mobile nucleoporin with transcription-dependent dynamics. Mol Biol Cell 13:1282–1297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hinshaw JE, Milligan RA (2003) Nuclear pore complexes exceeding eightfold rotational symmetry. J Struct Biol 141:259–268

    Article  CAS  PubMed  Google Scholar 

  • Huh WK, Falvo JV, Gerke LC, Carroll AS, Howson RW, Weissman JS, O'Shea EK (2003) Global analysis of protein localization in budding yeast. Nature 425:686–691

    Article  CAS  PubMed  Google Scholar 

  • Kopek BG, Shtengel G, Xu CS, Clayton DA, Hess HF (2012) Correlative 3D superresolution fluorescence and electron microscopy reveal the relationship of mitochondrial nucleoids to membranes. Proc Natl Acad Sci U S A 109:6136–6141

    Article  PubMed  PubMed Central  Google Scholar 

  • Löschberger A, Svd L, Dabauvalle M-C, Rieger B, Heilemann M, Krohne G, Sauer M (2012) Super-resolution imaging visualizes the eightfold symmetry of gp210 proteins around the nuclear pore complex and resolves the central channel with nanometer resolution. J Cell Sci 125:570–575

    Article  CAS  PubMed  Google Scholar 

  • Loschberger A, Franke C, Krohne G, van de Linde S, Sauer M (2014) Correlative super-resolution fluorescence and electron microscopy of the nuclear pore complex with molecular resolution. J Cell Sci 127:4351–4355

    Article  CAS  PubMed  Google Scholar 

  • Ma J, Yang W (2010) Three-dimensional distribution of transient interactions in the nuclear pore complex obtained from single-molecule snapshots. Proc Natl Acad Sci USA 107:7305–7310

    Article  PubMed  Google Scholar 

  • Mi L, Goryaynov A, Lindquist A, Rexach M, Yang WD (2015) Quantifying nucleoporin stoichiometry inside single nuclear pore complexes in vivo. Sci Rep 5:9372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nanguneri S, Flottmann B, Horstmann H, Heilemann M, Kuner T (2012) Three-dimensional, tomographic super-resolution fluorescence imaging of serially sectioned thick samples. Plos One 7:e38098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ori A, Banterle N, Iskar M, Andrés-Pons A, Escher C, Khanh Bui H, Sparks L, Solis-Mezarino V, Rinner O, Bork P et al (2013) Cell type-specific nuclear pores: a case in point for context-dependent stoichiometry of molecular machines. Mol Syst Biol 9:648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pouwels LJ, Zhang L, Chan NH, Dorrestein PC, Wachter RM (2008) Kinetic isotope effect studies on the de novo rate of chromophore formation in fast- and slow-maturing GFP variants. Biochemistry 47:10111–10122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rabut G, Doye V, Ellenberg J (2004) Mapping the dynamic organization of the nuclear pore complex inside single living cells. Nat Cell Biol 6:1114–1121

    Article  CAS  PubMed  Google Scholar 

  • Reichelt R, Holzenburg A, Buhle EL, Jarnik M, Engel A, Aebi U (1990) Correlation between structure and mass-distribution of the nuclear-pore complex and of distinct pore complex components. J Cell Biol 110:883–894

    Article  CAS  PubMed  Google Scholar 

  • Rout MP, Blobel G (1993) Isolation of the yeast nuclear pore complex. J Cell Biol 123:771–783

    Article  CAS  PubMed  Google Scholar 

  • Rout MP, Aitchison JD, Suprapto A, Hjertaas K, Zhao Y, Chait BT (2000) The yeast nuclear pore complex: composition, architecture, and transport mechanism. J Cell Biol 148:635–651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Savas JN, Toyama BH, Xu T, Yates JR, Hetzer MW (2012) Extremely long-lived nuclear pore proteins in the rat brain. Science 335:942–942

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Strambio-De-Castillia C, Niepel M, Rout MP (2010) The nuclear pore complex: bridging nuclear transport and gene regulation. Nature Reviews Molecular Cell Biology 11:490–501

    Article  CAS  PubMed  Google Scholar 

  • Stuwe T, Correia AR, Lin DH, Paduch M, Lu VT, Kossiakoff AA, Hoelz A (2015) Architecture of the nuclear pore complex coat. Science 347:1148–1152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suntharalingam M, Wente SR (2003) Peering through the pore: nuclear pore complex structure, assembly, and function. Developmental Cell 4:775–789

    Article  CAS  PubMed  Google Scholar 

  • Szymborska A, de Marco A, Daigle N, Cordes VC, Briggs JAG, Ellenberg J (2013) Nuclear pore scaffold structure analyzed by super-resolution microscopy and particle averaging. Science 341:655–658

    Article  CAS  PubMed  Google Scholar 

  • Tanudji M, Hevi S, Chuck SL (2002) Improperly folded green fluorescent protein is secreted via a non-classical pathway. J Cell Sci 115:3849–3857

    Article  CAS  PubMed  Google Scholar 

  • Tie HC, Madugula V, Lu L (2016) The development of a single molecule fluorescence standard and its application in estimating the stoichiometry of the nuclear pore complex. Biochem Biophys Res Commun 478:1694–1699

    Article  CAS  PubMed  Google Scholar 

  • von Appen A, Beck M (2016) Structure determination of the nuclear pore complex with three-dimensional cryo electron microscopy. J Mol Biol 428:2001–2010

    Article  CAS  Google Scholar 

  • von Appen A, Kosinski J, Sparks L, Ori A, DiGuilio AL, Vollmer B, Mackmull MT, Banterle N, Parca L, Kastritis P et al (2015) In situ structural analysis of the human nuclear pore complex. Nature 526:140

    Article  CAS  Google Scholar 

  • Wente SR, Blobel G (1994) Nup145 encodes a novel yeast glycine-leucine-phenylalanine-glycine (GLFG) nucleoporin required for nuclear-envelope structure. Journal Of Cell Biology 125:955–969

    Article  CAS  PubMed  Google Scholar 

  • Yang Q, Rout MP, Akey CW (1998) Three-dimensional architecture of the Isolated yeast nuclear pore complex: functional and evolutionary implications. Mol Cell 1:223–234

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work is supported by National Natural Science Foundation of China (61575046, 11574056, and 31500599) and Science and Technology Commission of Shanghai Municipality (Shanghai Rising-Star Program, 16QA1400400).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiong Ma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mi, L., Yao, L., Ma, J. (2018). Structure of Yeast Nuclear Pore Complexes. In: Yang, W. (eds) Nuclear-Cytoplasmic Transport. Nucleic Acids and Molecular Biology, vol 33. Springer, Cham. https://doi.org/10.1007/978-3-319-77309-4_2

Download citation

Publish with us

Policies and ethics