Skip to main content

Network Visualization Literacy: Novel Approaches to Measurement and Instruction

  • Chapter
  • First Online:
Network Science In Education

Abstract

Network visualizations, a particular kind of data visualization, can be a useful way to visually represent the relationships in real or theoretical social, physical, or biological systems. Network data can be generated and analyzed without being visualized, but the visualizations are often more compelling and may be more easily understood than numbers that summarize network properties. With the growth of network science research across a variety of domains, there is an increased call for basic literacies in networks and the ability to use network visualization as a powerful tool to understand interactions in complex systems. In this chapter, we discuss the current status of the research on network visualization literacy (NVL), how it is measured, what the current research says about NVL across a variety of contexts, ways experts are teaching to develop NVL, and recommendations based on our current understanding of best ways to improve NVL.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Sayama, H., Cramer, C., Porter, M. A., Sheetz, L., & Uzzo, S. (2016). What are essential concepts about networks? Journal of Complex Networks, 4(3), 457–474. doi:https://doi.org/10.1093/comnet/cnv028

    Article  Google Scholar 

  2. Börner, K., Balliet, R., Maltese, A. V., Uzzo, S. M., & Heimlich, J. E. (2015). Meaning Making Through Data Representation Construction and Deconstruction. Paper presented at the AERA 2015 Annual Meeting, Chicago, IL.

    Google Scholar 

  3. Maltese, A. V., Harsh, J. A., & Svetina, D. (2015). Data Visualization Literacy: Investigating Data Interpretation Along the Novice—Expert Continuum. Journal of College Science Teaching, 45(1), 84–90.

    Article  Google Scholar 

  4. Eliassi-Rad, T., & Henderson, K. (2010). Literature search through mixed-membership community discovery. In S.-K. Chai, J. Salerno, & P. L. Mabry (Eds.), Advances in Social Computing: Third International Conference on Social Computing, Behavioral Modeling and Prediction, SBP10 (pp. 70–78). Bethesda, MD: Springer.

    Chapter  Google Scholar 

  5. Börner, K., Maltese, A. V., Balliet, R., & Heimlich, J. E. (2016). Investigating Aspects of Data Visualization Literacy Using 20 Information Visualizations and 273 Science Museum Visitors. Information Visualization, 15(3), 198–213.

    Article  Google Scholar 

  6. Card, S., Mackinlay, J. D., & Shneiderman, B. (1999). Readings in information visualization : using vision to think. San Francisco: Morgan Kaufmann Publishers.

    Google Scholar 

  7. Fabrikant, S. I., Montello, D. R., Ruocco, M., & Middleton, R. S. (2004). The Distance-Similarity Metaphor in Network-Display Spatializations. Cartography and Geographic Information Science, 31(4), 237–252.

    Article  Google Scholar 

  8. Ghoniem, M., Fekete, J.-D., & Castagliola, P. (2005). On the readability of graphs using node-link and matrix-based representations: a controlled experiment and statistical analysis. Information Visualization, 4(2), 114–135. doi:https://doi.org/10.1057/palgrave.ivs.9500092

    Article  Google Scholar 

  9. Bennett, C., Ryall, J., Spalteholz, L., & Gooch, A. (2007). The Aesthetics of Graph Visualization. In D. W. Cunningham, G. Meyer, & L. Neumann (Eds.), Computational Aesthetics in Graphics, Visualization, and Imaging (pp. 57–64): The Eurographics Association.

    Google Scholar 

  10. Fabrikant, S. I., & Montello, D. R. (2008). The effect of instructions on distance and similarity judgements in information spatializations. International Journal of Geographical Information Science, 22(4), 463–478. doi:https://doi.org/10.1080/13658810701517096

    Article  Google Scholar 

  11. Fabrikant, S. I., Ruocco, M., Middleton, R., Montello, D. R., & Jörgensen, C. (2002). The first law of cognitive geography: Distance and similarity in semantic space. Paper presented at the GIScience 2002, Boulder, CO.

    Google Scholar 

  12. Ware, C. (2013). Information visualization: perception for design (3rd ed.). Waltham, MA: Morgan Kaufmann Publishers.

    Google Scholar 

  13. Börner, K., Chen, C., & Boyack, K. W. (2003). Visualizing knowledge domains. Annual Review of Information Science and Technology, 37(1), 179–255.

    Article  Google Scholar 

  14. Brandes, U. (2001). A Faster Algorithm for Betweenness Centrality. Journal of Mathematical Sociology, 25, 163–177.

    Article  Google Scholar 

  15. Purchase, H. C. (1997). Which aesthetic has the greatest effect on human understanding? Paper presented at the Graph Drawing. GD 1997. Lecture Notes in Computer Science, vol 1353.

    Chapter  Google Scholar 

  16. Purchase, H. C. (2000). Effective information visualisation: a study of graph drawing aesthetics and algorithms. Interacting with Computers, 13(2), 147–162.

    Article  Google Scholar 

  17. Purchase, H. C., Carrington, D., & Allder, J. (2002). Empirical evaluation of aesthetics-based graph layout. Empirical Software Engineering, 7(3), 233–255.

    Article  Google Scholar 

  18. Purchase, H. C., Cohen, R. F., & James, M. I. (1997). An experimental study of the basis for graph drawing algorithms. Journal of Experimental Algorithmics, 2, No. 4. doi:https://doi.org/10.1145/264216.264222

    Article  Google Scholar 

  19. Ware, C., Purchase, H. C., Colpoys, L., & McGill, M. (2002). Cognitive measurements of graph aesthetics. Information Visualization, 1(2), 103–110. doi:https://doi.org/10.1057/palgrave.ivs.9500013

    Article  Google Scholar 

  20. Huang, W. (2013). An aggregation-based overall quality measurement for visualization. Retrieved from https://arxiv.org/abs/1306.2404

  21. Huang, W. (2014). Evaluating overall quality of graph visualizations indirectly and directly. In W. Huang (Ed.), Handbook of Human Centric Visualization (pp. 373–390). New York: Springer-Verlag.

    Chapter  Google Scholar 

  22. Huang, W., Eades, P., Hong, S.-H., & Lin, C.-C. (2013). Improving multiple aesthetics produces better graph drawings. Journal of Visual Languages & Computing, 24(4), 262–272. doi:https://doi.org/10.1016/j.jvlc.2011.12.002

    Article  Google Scholar 

  23. Huang, W., & Huang, M. L. (2011). Exploring the relative importance of number of edge crossings and size of crossing angles: A quantitative perspective. International Journal of Advanced Intelligence, 3(1), 25–42.

    Article  Google Scholar 

  24. Huang, W., Huang, M. L., & Lin, C.-C. (2016). Evaluating overall quality of graph visualizations based on aesthetics aggregation. Information Sciences, 330, 444–454.

    Article  Google Scholar 

  25. Cleveland, W. S., & McGill, R. (1985). Graphical perception and graphical methods for analyzing scientific data. Science, 299(4716), 828–833.

    Article  Google Scholar 

  26. Heer, J., & Bostock, M. (2010). Crowdsourcing graphical perception: using mechanical turk to assess visualization design. Paper presented at the Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, New York, NY, USA. http://dl.acm.org/citation.cfm?doid=1753326.1753357

  27. Uzzo, S., & Siegel, E. (2010). Connections: The Nature of Networks, Communicating Complex and Emerging Science. In A. Filippoupoliti (Ed.), Science Exhibitions, Communication and Evaluation. Edinburgh: MuseumsEtc.

    Google Scholar 

  28. Cohen, S. (2002). Connections The Nature of Networks: Front End Evaluation. Retrieved from Program Evaluation and Research Group:

    Google Scholar 

  29. Rothenberg, M., & Hart, J. (2006). Analysis of Visitor Experience in the Exhibition Connections: the Nature of Networks at the New York Hall of Science. Retrieved from Northampton, MA:

    Google Scholar 

  30. National Governors Association Center for Best Practices, & Council of Chief State School Officers. (2010). Common Core State Standards. Retrieved from http://www.corestandards.org/

  31. NGSS Lead States. (2013). Next Generation Science Standards: For States, By States. Washington, DC: The National Academies Press.

    Google Scholar 

  32. Cramer, C., Sheetz, L., Sayama, H., Trunfio, P., Stanley, H. E., & Uzzo, S. (2015). NetSci High: Bringing Network Science Research to High Schools. Paper presented at the Complex Networks VI: Proceedings of the 6th Workshop on Complex Networks CompleNet 2015, New York.

    Google Scholar 

  33. Faux, R. (2015). Evaluation of the NetSci High ITEST Project: Summative Report. Retrieved from Boston:

    Google Scholar 

  34. Börner, K. (2015). Atlas of knowledge: Anyone can map. Cambridge, MA: MIT Press.

    Google Scholar 

  35. CNS Center at Indiana University. (2017). IVMOOC: Information Visualization MOOC 2017. Retrieved from http://ivmooc.cns.iu.edu

  36. Börner, K., & Polley, D. E. (2014). Visual Insights: A Practical Guide to Making Sense of Data. Cambridge, MA: The MIT Press.

    Google Scholar 

  37. Sci2 Team. (2009). Science of Science (Sci2) Tool. Indiana University and SciTech Strategies, http://sci2.cns.iu.edu.

Download references

Acknowledgments

This work was partially supported by the National Institutes of Health under awards P01 AG039347 and U01CA198934 and the National Science Foundation under awards NCSE 1538763, EAGER 1566393, NRT 1735095, AISL 1713567, and NCN CP Supplement 1553044. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zoss, A., Maltese, A., Uzzo, S.M., Börner, K. (2018). Network Visualization Literacy: Novel Approaches to Measurement and Instruction. In: Cramer, C., Porter, M., Sayama, H., Sheetz, L., Uzzo, S. (eds) Network Science In Education. Springer, Cham. https://doi.org/10.1007/978-3-319-77237-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-77237-0_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-77236-3

  • Online ISBN: 978-3-319-77237-0

  • eBook Packages: EducationEducation (R0)

Publish with us

Policies and ethics