Skip to main content

Interactive Data Analytics for the Humanities

  • Conference paper
  • First Online:
Computational Linguistics and Intelligent Text Processing (CICLing 2017)

Abstract

In this vision paper, we argue that current solutions to data analytics are not suitable for complex tasks from the humanities, as they are agnostic of the user and focused on static, predefined tasks with large-scale benchmarks. Instead, we believe that the human must be put into the loop to address small data scenarios that require expert domain knowledge and fluid, incrementally defined tasks, which are common for many humanities use cases. Besides the main challenges, we discuss existing and urgently required solutions to interactive data acquisition, model development, model interpretation, and system support for interactive data analytics. In the envisioned interactive systems, human users not only provide annotations to a machine learner, but train a model by using the system and demonstrating the task. The learning system will actively query the user for feedback, refine its model in real-time, and is able to explain its decisions. Our vision links natural language processing research with recent advances in machine learning, computer vision, and data management systems, as realizing this vision relies on combining expertise from all of these scientific fields.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Entities should not be multiplied beyond necessity.

References

  1. Abbeel, P., Ng, A.Y.: Apprenticeship learning via inverse reinforcement learning. In: 21st International Conference on Machine learning (ICML), ACM, New York (2004)

    Google Scholar 

  2. von Ahn, L.: Games with a purpose. Computer 39(6), 96–98 (2006)

    MathSciNet  Google Scholar 

  3. Ambati, V., Vogel, S., Carbonell, J.G.: Active learning-based elicitation for semi-supervised word alignment. In: 48th Annual Meeting of the Association for Computational Linguistics (ACL), pp. 365–370. ACL, Stroudsburg (2010)

    Google Scholar 

  4. Amershi, S., Cakmak, M., Knox, W.B., Kulesza, T.: Power to the people: the role of humans in interactive machine learning. AI Mag. 35(4), 105–120 (2014)

    Article  Google Scholar 

  5. Argall, B.D., Chernova, S., Veloso, M., Browning, B.: A survey of robot learning from demonstration. Robot. Auton. Syst. 57(5), 469–483 (2009)

    Article  Google Scholar 

  6. Atkeson, C.G., Schaal, S.: Robot learning from demonstration. In: 14th International Conference on Machine Learning (ICML), pp. 12–20. Morgan Kaufmann, San Francisco (1997)

    Google Scholar 

  7. Attias, H.: A variational Bayesian framework for graphical models. In: Advances in Neural Information Processing Systems 12 (NIPS), pp. 209–215. MIT Press, Cambridge (2000)

    Google Scholar 

  8. Becker, M., Osborne, M.: A two-stage method for active learning of statistical grammars. In: 19th International Joint Conference on Artificial Intelligence (IJCAI), pp. 991–996. Morgan Kaufmann, San Francisco (2005)

    Google Scholar 

  9. Beckerle, M.: Interaktives Regellernen. Diploma thesis, Technische Universität Darmstadt (2009). [in German]

    Google Scholar 

  10. Bejan, C.A., Harabagiu, S.: Unsupervised event coreference resolution. Comput. Linguist. 40(2), 311–347 (2014)

    Article  Google Scholar 

  11. Blei, D.M.: Probabilistic topic models. Commun. ACM 55(4), 77–84 (2012)

    Article  Google Scholar 

  12. Branson, S., et al.: Visual recognition with humans in the loop. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6314, pp. 438–451. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15561-1_32

    Chapter  Google Scholar 

  13. Brinker, K.: Active learning of label ranking functions. In: 21st International Conference on Machine Learning (ICML), pp. 129–136. ACM, New York (2004)

    Google Scholar 

  14. Burger-Helmchen, T., Pénin, J.: The limits of crowdsourcing inventive activities: what do transaction cost theory and the evolutionary theories of the firm teach us? In: Proceedings of the Workshop on Open Source Innovation, Strasbourg, France, pp. 1–26 (2010)

    Google Scholar 

  15. Cakmak, M., Chao, C., Thomaz, A.L.: Designing interactions for robot active learners. IEEE Trans. Auton. Ment. Dev. 2(2), 108–118 (2010)

    Article  Google Scholar 

  16. Chambers, R.A., Michie, D.: Man-machine co-operation on a learning task. In: Parslow, R.D., Prowse, R., Elliott-Green, R. (eds.) Computer Graphics: Techniques and Applications, pp. 179–185. Plenum, London (1969)

    Chapter  Google Scholar 

  17. Chaney, A.J., Blei, D.M.: Visualizing topic models. In: 6th International Conference on Weblogs and Social Media (ICWSM). AAAI Press, Palo Alto (2012)

    Google Scholar 

  18. Chen, X., Bennett, P.N., Collins-Thompson, K., Horvitz, E.: Pairwise ranking aggregation in a crowdsourced setting. In: 6th ACM International Conference on Web Search and Data Mining (WSDM), pp. 193–202. ACM, New York (2013)

    Google Scholar 

  19. Chen, Z., Liu, B.: Lifelong Machine Learning. Synthesis Lectures on Artificial Intelligence and Machine Learning. Morgan & Claypool, San Rafael (2016)

    Google Scholar 

  20. Cohn, D.A., Atlas, L., Ladner, R.: Improving generalization with active learning. Mach. Learn. 15(2), 201–221 (1994)

    Google Scholar 

  21. Cooper, S., Foldit Players, et al.: predicting protein structures with a multiplayer online game. Nature 466, 756–760 (2010)

    Google Scholar 

  22. Crammer, K., Singer, Y.: Ultraconservative online algorithms for multiclass problems. J. Mach. Learn. Res. 3, 951–991 (2003)

    MATH  Google Scholar 

  23. Crotty, A., Galakatos, A., Zgraggen, E., Binnig, C., Kraska, T.: The case for interactive data exploration accelerators (IDEAs). In: Workshop on Human-In-the-Loop Data Analytics (HILDA@SIGMOD), p. 11. ACM, New York (2016)

    Google Scholar 

  24. Das, A., Agrawal, H., Zitnick, L., Parikh, D., Batra, D.: Human attention in visual question answering: do humans and deep networks look at the same regions? In: 2016 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 932–937. ACL, Stroudsburg (2016)

    Google Scholar 

  25. Daumé III, H.: Frustratingly easy domain adaptation. In: 45th Annual Meeting of the Association of Computational Linguistics (ACL), pp. 256–263. ACL, Stroudsburg (2007)

    Google Scholar 

  26. De Raedt, L., Kersting, K., Natarajan, S., Poole, D.: Statistical Relational Artificial Intelligence: Logic, Probability, and Computation. Synthesis Lectures on Artificial Intelligence and Machine Learning. Morgan & Claypool, San Rafael (2016)

    MATH  Google Scholar 

  27. Dzyuba, V., van Leeuwen, M., Nijssen, S., De Raedt, L.: Interactive learning of pattern rankings. Int. J. Artif. Intell. Tools 23(6), 1460026 (2014). https://doi.org/10.1142/S0218213014600264

    Article  Google Scholar 

  28. Elkahky, A.M., Song, Y., He, X.: A multi-view deep learning approach for cross domain user modeling in recommendation systems. In: 24th International Conference on World Wide Web (WWW), pp. 278–288. International World Wide Web Conferences Steering Committee, Geneva (2015)

    Google Scholar 

  29. Fails, J.A., Olsen, Jr., D.R.: Interactive machine learning. In: 8th International Conference on Intelligent User Interfaces (IUI), pp. 39–45. ACM, New York (2003)

    Google Scholar 

  30. Fürnkranz, J., Gamberger, D., Lavrač, N.: Foundations of Rule Learning. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-540-75197-7

    Book  MATH  Google Scholar 

  31. Fürnkranz, J., Hüllermeier, E. (eds.): Preference Learning. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14125-6

    Book  MATH  Google Scholar 

  32. Gabriel, A., Paulheim, H., Janssen, F.: Learning semantically coherent rules. In: Cellier, P., Charnois, T., Hotho, A., Matwin, S., Moens, M.F., Toussaint, Y. (eds.) 1st International Workshop on Interactions between Data Mining and Natural Language Processing. CEUR Workshop Proceedings, vol. 1202, pp. 49–63 (2014)

    Google Scholar 

  33. Gambäck, B., Olsson, F., Täckström, O.: Active learning for dialogue act classification. In: 12th Annual Conference of the International Speech Communication Association (INTERSPEECH), pp. 1329–1332. International Speech Communication Association, Baixas (2011)

    Google Scholar 

  34. Ghavamzadeh, M., Engel, Y., Valko, M.: Bayesian policy gradient and actor-critic algorithms. J. Mach. Learn. Res. 17, 1–53 (2016)

    MathSciNet  MATH  Google Scholar 

  35. Gillies, M., et al.: Human-centered machine learning. In: CHI Conference on Human Factors in Computing Systems, pp. 3558–3565. ACM, New York (2016)

    Google Scholar 

  36. Guns, T., Dries, A., Nijssen, S., Tack, G., De Raedt, L.: MiningZinc: a declarative framework for constraint-based mining. Artif. Intell. 244, 6–29 (2017)

    Article  MathSciNet  Google Scholar 

  37. He, H., Daumé III, H., Eisner, J.: Imitation learning by coaching. In: Pereira, F., Burges, C.J.C., Bottou, L., Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems 25 (NIPS), pp. 3149–3157. Curran Associates, Red Hook (2012)

    Google Scholar 

  38. Hendricks, L.A., et al.: Generating visual explanations. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9908, pp. 3–19. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46493-0_1

    Chapter  Google Scholar 

  39. Hu, Z., Ma, X., Liu, Z., Hovy, E., Xing, E.: Harnessing deep neural networks with logic rules. In: 54th Annual Meeting of the Association for Computational Linguistics (ACL), pp. 2410–2420. ACL, Stroudsburg (2016)

    Google Scholar 

  40. Hutter, F., Lücke, J., Schmidt-Thieme, L.: Beyond manual tuning of hyperparameters. Künstl Intell. 29(4), 329–337 (2015)

    Article  Google Scholar 

  41. Ipeirotis, P.G., Provost, F.J., Sheng, V.S., Wang, J.: Repeated labeling using multiple noisy labelers. Data Min. Knowl. Disc. 28(2), 402–441 (2014)

    Article  MathSciNet  Google Scholar 

  42. Jamieson, K.G., Jain, L., Fernandez, C., Glattard, N.J., Nowak, R.: NEXT: a system for real-world development, evaluation, and application of active learning. In: Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., Garnett, R. (eds.) Advances in Neural Information Processing Systems 28 (NIPS), pp. 2638–2646 (2015)

    Google Scholar 

  43. Jannach, D., Zanker, M., Felfernig, A., Friedrich, G.: Recommender Systems: An Introduction. Cambridge University Press, Cambridge (2010)

    Book  Google Scholar 

  44. Kandasamy, K., Schneider, J., Poczos, B.: Bayesian active learning for posterior estimation. In: 24th International Joint Conference on Artificial Intelligence (IJCAI), pp. 3605–3611. AAAI Press, Menlo Park (2015)

    Google Scholar 

  45. Kapoor, A., Grauman, K., Urtasun, R., Darrell, T.: Active learning with Gaussian processes for object categorization. In: 11th International Conference on Computer Vision (ICCV), pp. 1–8. IEEE, New York (2007)

    Google Scholar 

  46. Kapoor, A., Horvitz, E.: Principles of lifelong learning for predictive user modeling. In: Conati, C., McCoy, K., Paliouras, G. (eds.) UM 2007. LNCS (LNAI), vol. 4511, pp. 37–46. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73078-1_7

    Chapter  Google Scholar 

  47. Karger, D.R., Oh, S., Shah, D.: Iterative learning for reliable crowdsourcing systems. In: Shawe-Taylor, J., Zemel, R.S., Bartlett, P.L., Pereira, F., Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems 24 (NIPS), pp. 1953–1961. Curran Associates, Red Hook (2011)

    Google Scholar 

  48. Kersting, K., Mladenov, M., Tokmakov, P.: Relational linear programming. Artif. Intell. 244, 188–216 (2017)

    Article  MathSciNet  Google Scholar 

  49. Kim, B., Malioutov, D., Varshney, K. (eds.): Proceedings of the ICML 2016 Workshop on Human Interpretability in Machine Learning, New York (2016) https://sites.google.com/site/2016whi/

  50. Kim, H., Teh, Y.W.: Scalable structure discovery in regression using Gaussian processes. In: Hutter, F., Kotthoff, L., Vanschoren, J. (eds.) 2016 Workshop on Automatic Machine Learning. JMLR Workshop and Conference Proceedings, vol. 64, pp. 31–40 (2016)

    Google Scholar 

  51. Kim, Y.B., Stratos, K., Sarikaya, R., Jeong, M.: New transfer learning techniques for disparate label sets. In: 53rd Annual Meeting of the Association for Computational Linguistics and 7th International Joint Conference on Natural Language Processing (ACL/IJCNLP), pp. 473–482. ACL, Stroudsburg (2015)

    Google Scholar 

  52. Kingma, D.P., Welling, M.: Auto-encoding variational Bayes. In: Proceedings of the International Conference on Learning Representations (ICLR). arXiv:1312.6114, Banff, AB, Canada (2014)

  53. Kraska, T., Talwalkar, A., Duchi, J.C., Griffith, R., Franklin, M.J., Jordan, M.I.: MLbase: a distributed machine-learning system. In: 6th Biennial Conference on Innovative Data Systems Research (CIDR) (2013)

    Google Scholar 

  54. Kucherbaev, P., Daniel, F., Tranquillini, S., Marchese, M.: Crowdsourcing processes: a survey of approaches and opportunities. IEEE Internet Comput. 20(2), 50–56 (2016)

    Article  Google Scholar 

  55. Lampouras, G., Vlachos, A.: Imitation learning for language generation from unaligned data. In: 26th International Conference on Computational Linguistics (COLING), pp. 1101–1112. The COLING 2016 Organizing Committee, Osaka (2016)

    Google Scholar 

  56. Lang, T., Toussaint, M., Kersting, K.: Exploration in relational domains for model-based reinforcement learning. J. Mach. Learn. Res. 13, 3725–3768 (2012)

    MathSciNet  MATH  Google Scholar 

  57. Lecun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)

    Article  Google Scholar 

  58. Lewis, D.D., Gale, W.: A sequential algorithm for training text classifiers. In: Croft, B.W., van Rijsbergen, C.J. (eds.) SIGIR ’94, pp. 3–12. Springer, London (1994). https://doi.org/10.1007/978-1-4471-2099-5_1

    Chapter  Google Scholar 

  59. Lin, L.J.: Self-improving reactive agents based on reinforcement learning, planning and teaching. Mach. Learn. 8(3), 293–321 (1992)

    Google Scholar 

  60. Lindauer, M.T., Hoos, H.H., Hutter, F., Schaub, T.: AutoFolio: an automatically configured algorithm selector. J. Artif. Intell. Res. 53, 745–778 (2015)

    Article  Google Scholar 

  61. Liu, Z., Heer, J.: The effects of interactive latency on exploratory visual analysis. IEEE Trans. Vis. Comput. Graph. 20(12), 2122–2131 (2014)

    Article  Google Scholar 

  62. Long, M., Cao, Y., Wang, J., Jordan, M.I.: Learning transferable features with deep adaptation networks. In: Bach, F., Blei, D. (eds.) 32nd International Conference on Machine Learning (ICML). JMLR: Workshop and Conference Proceedings, vol. 37, pp. 97–105 (2015)

    Google Scholar 

  63. Lu, J., Yang, J., Batra, D., Parikh, D.: Hierarchical question-image co-attention for visual question answering. In: Lee, D.D., Sugiyama, M., Luxburg, U.V., Guyon, I., Garnett, R. (eds.) Advances In Neural Information Processing Systems 29 (NIPS), pp. 289–297 (2016)

    Google Scholar 

  64. Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. In: Burges, C., Bottou, L., Welling, M., Ghahramani, Z., Weinberger, K. (eds.) Advances in Neural Information Processing Systems 26 (NIPS), pp. 3111–3119 (2013)

    Google Scholar 

  65. Mladenov, M., Kleinhans, L., Kersting, K.: Lifted inference for convex quadratic programs. In: 31st AAAI Conference on Artificial Intelligence (AAAI), pp. 2350–2356. AAAI Press, Palo Alto (2017)

    Google Scholar 

  66. Mnih, V., et al.: Human-level control through deep reinforcement learning. Nature 518(7540), 529–533 (2015)

    Google Scholar 

  67. Natarajan, S., Joshi, S., Tadepalli, P., Kersting, K., Shavlik, J.: Imitation learning in relational domains: a functional-gradient boosting approach. In: 22nd International Joint Conference on Artificial Intelligence (IJCAI), pp. 1414–1420. AAAI Press, Menlo Park (2011)

    Google Scholar 

  68. Ng, A.Y., Russell, S.J.: Algorithms for inverse reinforcement learning. In: Langley, P. (ed.) 17th International Conference on Machine Learning (ICML), pp. 663–670. Morgan Kaufmann, San Francisco (2000)

    Google Scholar 

  69. Odom, P., Natarajan, S.: Actively interacting with experts: a probabilistic logic approach. In: Frasconi, P., Landwehr, N., Manco, G., Vreeken, J. (eds.) ECML PKDD 2016. LNCS (LNAI), vol. 9852, pp. 527–542. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46227-1_33

    Chapter  Google Scholar 

  70. Olsson, F.: A literature survey of active machine learning in the context of natural language processing. SICS Technical report T2009:06, Swedish Institute of Computer Science (2009)

    Google Scholar 

  71. Oquab, M., Bottou, L., Laptev, I., Sivic, J.: Learning and transferring mid-level image representations using convolutional neural networks. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1717–1724. IEEE, New York (2014)

    Google Scholar 

  72. Pan, S.J., Yang, Q.: A survey on transfer learning. IEEE Trans. Knowl. Data Eng. 22(10), 1345–1359 (2010)

    Article  Google Scholar 

  73. Papandreou, G., Chen, L.C., Murphy, K., Yuille, A.L.: Weakly-and semi-supervised learning of a deep convolutional network for semantic image segmentation. In: International Conference on Computer Vision (ICCV), pp. 1742–1750. IEEE, New York (2015)

    Google Scholar 

  74. Parikh, D., Grauman, K.: Interactively building a discriminative vocabulary of nameable attributes. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1681–1688. IEEE, New York (2011)

    Google Scholar 

  75. Park, Y., Cafarella, M.J., Mozafari, B.: Neighbor-sensitive hashing. Proc. VLDB Endow. 9(3), 144–155 (2015)

    Article  Google Scholar 

  76. Pennington, J., Socher, R., Manning, C.D.: GloVe: global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp. 1532–1543. ACL, Stroudsburg (2014)

    Google Scholar 

  77. Piot, B., Geist, M., Pietquin, O.: Bridging the gap between imitation learning and inverse reinforcement learning. IEEE Trans. Neural Netw. 28(8), 1814–1826 (2016)

    Article  MathSciNet  Google Scholar 

  78. Porter, R., Theiler, J., Hush, D.: Interactive machine learning in data exploitation. Comput. Sci. Eng. 15(5), 12–20 (2013)

    Article  Google Scholar 

  79. Radlinski, F., Joachims, T.: Query chains: learning to rank from implicit feedback. In: 11th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 239–248. ACM, New York (2005)

    Google Scholar 

  80. de Raedt, L., Bruynooghe, M.: Interactive concept-learning and constructive induction by analogy. Mach. Learn. 8(2), 107–150 (1992)

    MATH  Google Scholar 

  81. Ranganath, R., Tang, L., Charlin, L., Blei, D.M.: Deep exponential families. In: Lebanon, G., Vishwanathan, S. (eds.) 18th International Conference on Artificial Intelligence and Statistics (AISTATS). JMLR Workshop and Conference Proceedings, vol. 38, pp. 762–771 (2015)

    Google Scholar 

  82. Ratner, A., De Sa, C., Wu, S., Selsam, D., Re, C.: Data programming: creating large training sets, quickly. In: Lee, D.D., Sugiyama, M., Luxburg, U.V., Guyon, I., Garnett, R. (eds.) Advances in Neural Information Processing Systems 29 (NIPS), pp. 3567–3575 (2016)

    Google Scholar 

  83. Recht, B., Ré, C., Wright, S.J., Niu, F.: Hogwild: A lock-free approach to parallelizing stochastic gradient descent. In: Shawe-Taylor, J., Zemel, R.S., Bartlett, P.L., Pereira, F., Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems 24 (NIPS), pp. 693–701. Curran Associates, Red Hook (2011)

    Google Scholar 

  84. Rosenberg, C., Hebert, M., Schneiderman, H.: Semi-supervised self-training of object detection models. In: 7th IEEE Workshops on Application of Computer Vision (WACV), pp. 29–36. IEEE, New York (2005)

    Google Scholar 

  85. Rothe, S., Schütze, H.: Word embedding calculus in meaningful ultradense subspaces. In: 54th Annual Meeting of the Association for Computational Linguistics (ACL), pp. 512–517. ACL, Stroudsburg (2016)

    Google Scholar 

  86. Rother, C., Kolmogorov, V., Blake, A.: “GrabCut”: interactive foreground extraction using iterated graph cuts. ACM Trans. Graph. 23(3), 309–314 (2004)

    Article  Google Scholar 

  87. Rush, A.M., Chopra, S., Weston, J.: A neural attention model for abstractive sentence summarization. In: Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 379–389. ACL, Stroudsburg (2015)

    Google Scholar 

  88. Schaal, S.: Learning from demonstration. In: Jordan, M.I., Petsche, T. (eds.) Advances in Neural Information Processing Systems 9 (NIPS), pp. 1040–1046. MIT Press, Cambridge (1997)

    Google Scholar 

  89. Schein, A.I., Popescul, A., Ungar, L.H., Pennock, D.M.: Methods and metrics for cold-start recommendations. In: 25th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 253–260. ACM, New York (2002)

    Google Scholar 

  90. Schmidhuber, J.: Deep learning in neural networks: an overview. Neural Netw. 61, 85–117 (2015)

    Article  Google Scholar 

  91. Settles, B.: Active Learning. Synthesis Lectures on Artificial Intelligence and Machine Learning. Morgan & Claypool, San Rafael (2012)

    MATH  Google Scholar 

  92. Seung, H.S., Opper, M., Sompolinsky, H.: Query by committee. In: 5th Annual ACM Workshop on Computational Learning Theory (COLT), pp. 287–294. ACM, New York (1992)

    Google Scholar 

  93. Shaikhina, T., Lowe, D., Daga, S., Briggs, D., Higgins, R., Khovanova, N.: Machine learning for predictive modelling based on small data in biomedical engineering. IFAC-PapersOnLine 48(20), 469–474 (2015)

    Article  Google Scholar 

  94. Shivaswamy, P., Joachims, T.: Coactive learning. J. Artif. Intell. Res. 53, 1–40 (2015)

    Article  MathSciNet  Google Scholar 

  95. Simpson, E., Roberts, S.: Bayesian methods for intelligent task assignment in crowdsourcing systems. In: Guy, T., Kárný, M., Wolpert, D. (eds.) Decision Making: Uncertainty, Imperfection, Deliberation and Scalability. SCI, vol. 538, pp. 1–32. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-15144-1_1

    Chapter  Google Scholar 

  96. Simpson, E., Roberts, S., Psorakis, I., Smith, A.: Dynamic Bayesian combination of multiple imperfect classifiers. In: Guy, T., Karny, M., Wolpert, D. (eds.) Decision Making and Imperfection. SCI, vol. 474, pp. 1–35. Springer, Berlin, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36406-8_1

    Chapter  Google Scholar 

  97. Stecher, J., Janssen, F., Frederik, F.: Shorter rules are better, aren’t they? In: Calders, T., Ceci, M., Malerba, D. (eds.) DS 2016. LNCS (LNAI), vol. 9956, pp. 279–294. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46307-0_18

    Chapter  Google Scholar 

  98. Subramanian, K., Amor, H.B., Isbell, C.L., Thomaz, A.L. (eds.): Proceedings of the IJCAI 2016 Workshop on Interactive Machine Learning: Connecting Humans and Machines, New York (2016). https://sites.google.com/site/ijcai2016iml/

  99. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press, Cambridge (1998)

    Google Scholar 

  100. Tatbul, N.: Load shedding. In: Liu, L., Özsu, M.T. (eds.) Encyclopedia of Database Systems, pp. 1632–1636. Springer, New York (2009). https://doi.org/10.1007/978-1-4899-7993-3_211-2

    Chapter  Google Scholar 

  101. Thornton, C., Hutter, F., Hoos, H.H., Leyton-Brown, K.: Auto-WEKA: combined selection and hyperparameter optimization of classification algorithms. In: 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 847–855. ACM, New York (2013)

    Google Scholar 

  102. Titov, I., Khoddam, E.: Unsupervised induction of semantic roles within a reconstruction-error minimization framework. In: Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (NAACL-HLT), pp. 1–10. ACL, Stroudsburg (2015)

    Google Scholar 

  103. Tomanek, K., Olsson, F.: A web survey on the use of active learning to support annotation of text data. In: NAACL HLT 2009 Workshop on Active Learning for Natural Language Processing, pp. 45–48. ACL, Stroudsburg (2009)

    Google Scholar 

  104. Wang, S.I., Liang, P., Manning, C.D.: Learning language games through interaction. In: 54th Annual Meeting of the Association for Computational Linguistics (ACL), pp. 2368–2378. ACL, Stroudsburg (2016)

    Google Scholar 

  105. Welinder, P., Branson, S., Belongie, S., Perona, P.: The multidimensional wisdom of crowds. In: 23rd International Conference on Neural Information Processing Systems (NIPS), pp. 2424–2432. Curran Associates, Red Hook (2010)

    Google Scholar 

  106. Wilson, A.G., Kim, B., Herland, W. (eds.): Proceedings of the NIPS 2016 Workshop on Interpretable Machine Learning for Complex Systems, Barcelona, Spain (2016). https://sites.google.com/site/nips2016interpretml/

  107. Yang, Z., Cohen, W., Salakhutdinov, R.: Revisiting semi-supervised learning with graph embeddings. In: Balcan, M.F., Weinberger, K.Q. (eds.) 33rd International Conference on Machine Learning (ICML). JMLR: Workshop and Conference Proceedings, vol. 48, pp. 40–48 (2016)

    Google Scholar 

  108. Yimam, S.M., Biemann, C., Eckart de Castilho, R., Gurevych, I.: Automatic annotation suggestions and custom annotation layers in WebAnno. In: 52nd Annual Meeting of the Association for Computational Linguistics (ACL): System Demonstrations, pp. 91–96. ACL, Stroudsburg (2014)

    Google Scholar 

  109. Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8689, pp. 818–833. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10590-1_53

    Chapter  Google Scholar 

  110. Zhou, S., Chen, Q., Wang, X.: Active deep networks for semi-supervised sentiment classification. In: 23rd International Conference on Computational Linguistics (COLING), pp. 1515–1523. Tsinghua University Press, Beijing (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Iryna Gurevych or Christian M. Meyer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gurevych, I. et al. (2018). Interactive Data Analytics for the Humanities. In: Gelbukh, A. (eds) Computational Linguistics and Intelligent Text Processing. CICLing 2017. Lecture Notes in Computer Science(), vol 10761. Springer, Cham. https://doi.org/10.1007/978-3-319-77113-7_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-77113-7_41

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-77112-0

  • Online ISBN: 978-3-319-77113-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics