Skip to main content

3D Reconstruction of Urban History Based on Old Maps

  • Conference paper
  • First Online:
Digital Research and Education in Architectural Heritage (UHDL 2017, DECH 2017)

Abstract

Digital libraries increasingly provide large amounts of scanned maps. These historical cartographic documents are considered as part of the cultural heritage. In a geographical context, however, old topographic maps are very valuable information sources for tracking land use changes over long periods of time. This chapter presents a methodology for the automated 3D building reconstruction from recent and old topographic maps. The presented methodology was developed focusing primarily on urban research, spatial planning, and a nationwide retrospective land-use monitoring. In the interdisciplinary discourse, perspectives and benefits of the method application in urban history and cultural heritage research and education have been identified and are presented here.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anders, K.-H., Sester, M., Fritsch, D.: Analysis of settlement structures by graph-based clustering. In: SMATI 1999 Workshop on ‘Semantic Modeling’, München, Germany, pp. 41–49 (1999)

    Google Scholar 

  2. Banzhaf, E., Höfer, R.: Monitoring urban structure types as spatial indicators with CIR aerial photographs for a more effective urban environmental management. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 1(2), 129–138 (2008)

    Article  Google Scholar 

  3. Barr, S.L., Barnsley, M.J.: A region-based, graph-theoretic data model for the inference of second-order thematic information from remotely-sensed images. Int. J. Geogr. Inf. Sci. 11(6), 555–576 (1997)

    Article  Google Scholar 

  4. Behnisch, M., Poglitsch, H., Krüger, T.: Soil sealing and the complex bundle of influential factors: Germany as a case study. ISPRS Int. J. Geo-Inf. 8(132), 23 (2016)

    Google Scholar 

  5. Biljecki, F., Ledoux, H., Stoter, J.: Generating 3D city models without elevation data. Comput. Environ. Urban Syst. 2017(64), 1–18 (2017)

    Article  Google Scholar 

  6. Bill, R., Walter, K.: Crowdsourcing zur Georeferenzierung alter topographischer Karten: Ansatz, Erfahrungen und Qualitätsanalyse. In: ZfV, vol. 140, pp. 172–179 (2015)

    Google Scholar 

  7. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)

    Article  Google Scholar 

  8. Chiang, Y.-Y., Leyk, S., Knoblock, C.A.: A survey of digital map processing techniques. ACM Comput. Surv. 47(1), 1–44 (2014)

    Article  Google Scholar 

  9. Delmastro, C., Mutani, G., Schranz, L.: The evaluation of buildings energy consumption and the optimization of district heating networks: a GIS-based model. Int. J. Energy Environ. Eng. 7(3), 343–351 (2016)

    Article  Google Scholar 

  10. Gröger, G., Kolbe, T.H., Nagel, C., Häfele, K.-H.: OGC City Geography Markup Language (CityGML) Encoding Standard, version 2.0, OGC Doc No. 12-019. Open Geospatial Consortium. http://www.opengis.net/spec/citygml/2.0

  11. Fleet, C., Kowal, K.C., Přidal, P.: Georeferencer: crowdsourced georeferencing for map library collections. D-Lib Mag. (2012). https://doi.org/10.1045/november2012-fleet

  12. Geiß, C., Taubenböck, H., Wurm, M., et al.: Remote sensing-based characterization of settlement structures for assessing local potential of district heat. Remote Sens. 3(7), 1447–1471 (2011)

    Article  Google Scholar 

  13. Haase, D., Walz, U., Neubert, M., Rosenberg, M.: Changes to central european landscapes – analysing historical maps to approach current environmental issues, examples from Saxony, Central Germany. Land Use Policy 24(2007), 248–263 (2007)

    Article  Google Scholar 

  14. Haegler, S., Müller, P., Van Gool, L.: Procedural modeling for digital cultural heritage. EURASIP J. Image Video Process. 2009(1), 1–8 (2009)

    Article  Google Scholar 

  15. Hendricks, M.D.: Topographic map. In: Kemp, K.K. (ed.) Encyclopedia of Geographic Information Science, pp. 479–481. SAGE, London (2008)

    Google Scholar 

  16. Hecht, R.: Automatische Klassifizierung von Gebäudegrundrissen – Ein Beitrag zur kleinräumigen Beschreibung der Siedlungsstruktur. Dissertation, Dresden University of Technology. IÖR-Schriften 63. Rhombos, Berlin (2014)

    Google Scholar 

  17. Hecht, R., Meinel, G., Buchroithner, M.F.: Automatic identification of building types based on topographic databases – a comparison of different data sources. Int. J. Cartogr. 2015(1), 18–31 (2015)

    Article  Google Scholar 

  18. Hecht, R., Herold, H., Meinel, G., Buchroithner, M.F.: Automatic derivation of urban structure types from topographic maps by means of image analysis and machine learning. In: Proceedings of 26th International Cartographic Conference (2013)

    Google Scholar 

  19. Henn, A., Römer, C., Gröger, G., et al.: Automatic classification of building types in 3D city models using SVMs for semantic enrichment of low resolution building data. GeoInformatica 16(2), 281–306 (2012)

    Article  Google Scholar 

  20. Herold, H., Roehm, P., Hecht, R., Meinel, G.: Automatically georeferenced maps as a source for high resolution urban growth analyses. In: Proceedings of ICA 25th International Cartographic Conference, Paris, France, pp. 1–5 (2011)

    Google Scholar 

  21. Herold, H., Meinel, G., Hecht, R., Csaplovics, E.: A GEOBIA approach to map interpretation – multitemporal building footprint retrieval for high resolution monitoring of spatial urban dynamics. In: Proceedings of 4th GEOBIA, Rio de Janeiro, pp. 252–256 (2012)

    Google Scholar 

  22. Herold H.: Geoinformation from the Past – Computational Retrieval and Retrospective Monitoring of Historical Land Use. Springer Nature, Cham (2018)

    Google Scholar 

  23. IOER 2017a. http://www.ioer.de/langzeitmonitoring_slr/html/visualisierung/imaps_iframe3D.html. Accessed 18 Oct 2017

  24. IOER 2017b. http://www.ioer-monitor.de. Accessed 18 Oct 2017

  25. Jehling, M., Hecht, R., Herold, H.: Assessing urban containment policies within a suburban context – an approach to enable a regional perspective In: Land Use Policy (2016, online first)

    Google Scholar 

  26. Kienast, F.: Analysis of historic landscape patterns with a geographical information system - a methodological outline. Landscape Ecol. 8(2), 103–118 (1993)

    Article  Google Scholar 

  27. Kleemann, F., Lederer, J., Rechberger, H., Fellner, J.: GIS-based analysis of Vienna’s material stock in buildings. J. Ind. Ecol. 21, 368–380 (2017)

    Article  Google Scholar 

  28. Krüger, T., Meinel, G., Schumacher, U.: Land-use monitoring by topographic data analysis. Cartogr. Geograph. Inf. Sci. 40(3), 220–228 (2013)

    Article  Google Scholar 

  29. Kunze, C., Hecht, R.: Semantic enrichment of building data with volunteered geographic information to improve mappings of dwelling units and population. Comput. Environ. Urban Syst. 53(2015), 4–18 (2015)

    Article  Google Scholar 

  30. Leyk, S., Boesch, R., Weibel, R.: Saliency and semantic processing: extracting forest cover from historical topographic maps. Pattern Recogn. 39(5), 953–968 (2006)

    Article  Google Scholar 

  31. Loga, T., Diefenbach, N., Balaras, C., Dascalaki, E., Zavrl, M.S., Rakuscek, A., Corrado, V., Corgnati, S., Despretz, H., Roarty, C., et al.: Use of building typologies for energy performance assessment of national building stocks. Existent experiences in European countries and common approach – First TABULA synthesis report (2017). http://www.buildup.eu/node/9927. Accessed 25 July 2017

  32. Maiwald, F., Vietze, T., Schneider, D., Henze, F., Münster, S., Niebling, F.: Photogrammetric analysis of historical image repositories for virtual reconstruction in the field of digital humanities. In: International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. XLII-2/W3, pp. 447–452 (2017)

    Article  Google Scholar 

  33. Meinel, G., Hecht, R., Herold, H.: Analyzing building stock using topographic maps and GIS. Build. Res. Inf. 37(5–6), 468–482 (2009)

    Article  Google Scholar 

  34. Meinel, G.: Monitoring of settlement and open space development on the basis of topographical spatial data - concept, realization and first results. In: Core Spatial Databases - From Theory to Practice, Haifa, Israel, ISPRS Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, pp. 132–137 (2010)

    Google Scholar 

  35. SJM Tech: 3D Historical Reconstruction of the City of Cagliari. 3D render by © SJM TECH (2018). www.sjmtech.net/portfolio/cagliari_storica/

  36. Muhs, S., Herold, H., Meinel, G., Burkhardt, D., Kretschmer, O.: Automatic delineation of built-up area at urban block level from topographic maps. Comput. Environ. Urban Syst. 58, 71–84 (2016)

    Article  Google Scholar 

  37. Neidhart, H., Sester, M.: Identifying building types and building clusters using 3D-laser scanning and GIS-data. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. (Part B4) 35, 715–720 (2004)

    Google Scholar 

  38. Neubert, M., Walz, U.: Auswertung historischer Kartenwerke für ein Landschaftsmonitoring. In: Strobl, J., Blaschke, T., Griesebner, G. (eds.) Angewandte Geographische Informationsverarbeitung XIV - Beiträge zum AGIT-Symposium Salzburg 2002, Wichmann, Heidelberg, pp. 396–402 (2002)

    Google Scholar 

  39. Oka, S., Garg, A., Varghese, K.: Vectorization of contour lines from scanned topographic maps. Autom. Constr. 22, 192–202 (2012)

    Article  Google Scholar 

  40. OldMapsOnline. http://www.oldmapsonline.org. Accessed 18 Oct 2017

  41. Orford, S., Radcliffe, J.: Modelling UK residential dwelling types using OS Mastermap data: a comparison to the 2001 census. Comput. Environ. Urban Syst. 31(2), 206–227 (2007)

    Article  Google Scholar 

  42. Petit, C.C., Lambin, E.F.: Impact of data integration technique on historical land-use/land-cover change: comparing historical maps with remote sensing data in the Belgian Ardennes. Landscape Ecol. 17(2), 117–132 (2002)

    Article  Google Scholar 

  43. Podobnikar, T.: Georeferencing and quality assessment of Josephine survey maps for the mountainous region in the Triglav National Park. Acta Geodaetica et Geophysica Hungarica 44(1), 49–66 (2009)

    Article  Google Scholar 

  44. Prechtel, N.: On strategies and automation in upgrading 2D to 3D landscape representations. Cartogr. Geogr. Inf. Sci. 42(3), 244–258 (2015)

    Article  Google Scholar 

  45. Radies, C.: Procedural random generation of building models based Geobasis data and of the urban development with the software CityEngine. AGIT (2013)

    Google Scholar 

  46. Regnauld, N.: Contextual building typification in automated map generalization. Algorithmica 30(2), 312–333 (2001)

    Article  MathSciNet  Google Scholar 

  47. Resch, B., Sagl, G., Törnros, T., Bachmaier, A., Eggers, J.-B., Herkel, S., Narmsara, S., Gündra, H.: GIS-based planning and modeling for renewable energy: challenges and future research avenues. ISPRS Int. J. Geo-Inf. 3, 662–692 (2014)

    Article  Google Scholar 

  48. Röhm, P., Herold, H., Meinel, G.: Automatische Georeferenzierung gescannter deutscher Topographischer Karten im Maßstab 1:25000. Kartographische Nachrichten – J. Cartogr. Geogr. Inf. 62(4), 195–199 (2012)

    Google Scholar 

  49. Römer, C., Plümer, L.: Identifying architectural style in 3D city models with support vector machines. In: Photogrammetrie - Fernerkundung - Geoinformation, 05/2010, pp. 371–384 (2010)

    Article  Google Scholar 

  50. Rus, I., Balint, C., Craciunescu, V., Constantinescu, S., Ovejanu, I., Bartos-Elekes, Z.: Automated georeference of the 1: 20,000 Romanian maps under Lambert-Cholesky (1916-1959) projection system. Acta Geodaetica et Geophysica Hungarica 45(1), 105–111 (2010)

    Article  Google Scholar 

  51. Schemala, D., Schlesinger, D., Winkler, P., Herold, H., Meinel, G.: Semantic segmentation of settlement patterns in gray-scale map images using RF and CRF within an HPC environment. In: GEOBIA 2016: Solutions and Synergies. Faculty of Geo-Information and Earth Observation (ITC), University of Twente (2016)

    Google Scholar 

  52. SJM Tech (2017). http://www.sjmtech.net/old/show_cag_en.html

  53. Skokanová, H., Havlícek, M., Borovec, R., Demek, J., Eremiášová, R., Chrudina, Z., Mackovcin, P., Rysková, R., Slavík, P., Stránská, T., Svoboda, J.: Development of land use and main land use change processes in the period 1836–2006: case study in the Czech Republic. J. Maps 8(1), 88–96 (2012)

    Article  Google Scholar 

  54. Smith, D.; Crooks, A.: From buildings to cities: techniques for the multi-scale analysis of urban form and function. In: CASA Working Papers 155. Centre for Advanced Spatial Analysis (UCL), London (2010)

    Google Scholar 

  55. Steiniger, S., Lange, T., Burghardt, D., et al.: An approach for the classification of urban building structures based on discriminant analysis techniques. Trans. GIS 12(1), 31–59 (2008)

    Article  Google Scholar 

  56. Titova, O.A., Chernov, A.V.: Method for the automatic georeferencing and calibration of cartographic images. Appl. Probl. - Pattern Recogn. Image Anal. 19(1), 193–196 (2009)

    Article  Google Scholar 

  57. Virtual Map Forum 2.0, SLUB. http://kartenforum.slub-dresden.de

  58. Walde, I., Hese, S., Berger, C., Schmullius, C.: Graph-based mapping of urban structure types from high-resolution satellite image objects—case study of the German cities Rostock and Erfurt. IEEE Geosci. Remote Sens. Lett. 10(4), 932–936 (2012)

    Article  Google Scholar 

  59. Walz, U.: Monitoring of landscape change and functions in Saxony (Eastern Germany) - methods and indicators. Ecol. Ind. 8(6), 807–817 (2008)

    Article  Google Scholar 

  60. Werder, S., Kieler, B., Sester, M.: Semi-automatic interpretation of buildings and settlement areas in user-generated spatial data. In: Proceedings of 18th SIGSPATIAL International Conference on Advances in Geographic Information Systems, pp. 330–339. ACM, New York (2010)

    Google Scholar 

  61. Wurm, M., Taubenböck, H., Roth, A., Dech, S.: Urban structuring using multisensoral remote sensing data: by the example of the German cities Cologne and Dresden. In: Joint Urban Remote Sensing Event, Shanghai, 8 p. (2009)

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank federal mapping agency as well as the Saxon State Library for providing the maps. We also want thank the anonymous reviewers for their valuable comments that helped to improve the quality of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hendrik Herold .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Herold, H., Hecht, R. (2018). 3D Reconstruction of Urban History Based on Old Maps. In: Münster, S., Friedrichs, K., Niebling, F., Seidel-Grzesińska, A. (eds) Digital Research and Education in Architectural Heritage. UHDL DECH 2017 2017. Communications in Computer and Information Science, vol 817. Springer, Cham. https://doi.org/10.1007/978-3-319-76992-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-76992-9_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-76991-2

  • Online ISBN: 978-3-319-76992-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics