Skip to main content

Solar Radiation Forecasting with Statistical Models

  • Chapter
  • First Online:
Wind Field and Solar Radiation Characterization and Forecasting

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

Renewable energy electrical generation has experienced significant growth in the recent years. Renewable energies generate electrical energy using different natural resources, such as solar radiation and wind fields. These resources present an unstable behavior because they depend on different meteorological conditions. In order to maintain the balance between input and output electrical energy into the power system, grid operators need to control and predict these fluctuating events. Indeed, forecasting methods are completely necessary to increase the proportion of renewable energies into the system (Heinemann et al. in Forecasting of solar radiation: solar energy resource management for electricity generation from local level to global scale. Nova Science Publishers, New York, 2006 [17], Wittmann et al. in IEEE J Sel Top Appl Earth Obs Remote Sens 1:18–27, 2008 [46]). Reducing the uncertainty of natural resources, operators could reduce maintenance costs, improve the interventions in the intra-day market and optimize management decisions with nonrenewable energies supply. Many forecasting methods are used to obtain solar radiation forecasting for different time horizons. In this chapter, we will focus on several solar radiation forecasting statistical methods for intra-day time horizons using ground and exogenous data as inputs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Antonanzas-Torres F, Cañizares F, Perpiñán O (2013) Comparative assessment of global irradiation from a satellite estimate model (cm saf) and on-ground measurements (siar): a spanish case study. Renew Sustain Energy Rev 21:248–261

    Article  Google Scholar 

  2. Bird RE, Hulstrom RL (1981) Simplified clear sky model for direct and diffuse insolation on horizontal surfaces. Solar Energy Research Inst., Golden, CO (USA), Technical report

    Google Scholar 

  3. Bishop CM (1995) Neural networks for pattern recognition. Oxford university press

    Google Scholar 

  4. Boland J (1995) Time-series analysis of climatic variables. Sol Energy 55(5):377–388

    Article  Google Scholar 

  5. Boland J (2008) Time series modelling of solar radiation. Springer

    Google Scholar 

  6. Bosch J, Lopez G, Batlles F (2008) Daily solar irradiation estimation over a mountainous area using artificial neural networks. Renew Energy 33(7):1622–1628

    Article  Google Scholar 

  7. Box G, Jenkins G (1998) Time series analysis, forecasting and control. Wiley

    Google Scholar 

  8. Canada’s E (2015) World ozone monitoring mapping. http://es-ee.tor.ec.gc.ca/e/ozone/ozoneworld.htm/

  9. Chatfield C (2013) The analysis of time series: an introduction. CRC press

    Google Scholar 

  10. Chow CW, Urquhart B, Lave M, Dominguez A, Kleissl J, Shields J, Washom B (2011) Intra-hour forecasting with a total sky imager at the uc san diego solar energy testbed. Sol Energy 85(11):2881–2893

    Article  Google Scholar 

  11. Dambreville R, Blanc P, Chanussot J, Boldo D (2014) Very short term forecasting of the global horizontal irradiance using a spatio-temporal autoregressive model. Renew Energy 72:291–300

    Article  Google Scholar 

  12. Diagne M, David M, Boland J, Schmutz N, Lauret P (2014) Post-processing of solar irradiance forecasts from wrf model at reunion island. Sol Energy 105:99–108

    Article  Google Scholar 

  13. Diagne M, David M, Lauret P, Boland J, Schmutz N (2013) Review of solar irradiance forecasting methods and a proposition for small-scale insular grids. Renew Sustain Energy Rev 27:65–76

    Article  Google Scholar 

  14. Eissa Y, Korany M, Aoun Y, Boraiy M, Abdel Wahab MM, Alfaro SC, Blanc P, El-Metwally M, Ghedira H, Hungershoefer K et al (2015) Validation of the surface downwelling solar irradiance estimates of the helioclim-3 database in egypt. Remote Sens 7(7):9269–9291

    Article  Google Scholar 

  15. Gueymard CA (2008) Rest2: high-performance solar radiation model for cloudless-sky irradiance, illuminance, and photosynthetically active radiation-validation with a benchmark dataset. Sol Energy 82(3):272–285

    Article  Google Scholar 

  16. Hammer A, Heinemann D, Lorenz E, Lückehe B (1999) Short-term forecasting of solar radiation: a statistical approach using satellite data. Sol Energy 67(1):139–150

    Article  Google Scholar 

  17. Heinemann D, Lorenz E, Girodo M (2006) Forecasting of solar radiation: solar energy resource management for electricity generation from local level to global scale. Nova Science Publishers, New York

    Google Scholar 

  18. Hoff TE, Perez R (2012) Modeling pv fleet output variability. Sol Energy 86(8):2177–2189

    Article  Google Scholar 

  19. Holben BN, Eck T, Slutsker I, Tanre D, Buis J, Setzer A, Vermote E, Reagan J, Kaufman Y, Nakajima T et al (1998) Aeroneta federated instrument network and data archive for aerosol characterization. Remote Sens Environ 66(1):1–16

    Article  Google Scholar 

  20. Ineichen P (2014) Long term satellite global, beam and diffuse irradiance validation. Energy Procedia 48:1586–1596

    Article  Google Scholar 

  21. Ineichen P (2016) Validation of models that estimate the clear sky global and beam solar irradiance. Sol Energy 132:332–344

    Article  Google Scholar 

  22. Kostylev V, Pavlovski A et al (2011) Solar power forecasting performance–towards industry standards. In: 1st International workshop on the integration of solar power into power systems Aarhus, Denmark

    Google Scholar 

  23. Lauret P, David M, Fock E, Bastide A, Riviere C (2006) Bayesian and sensitivity analysis approaches to modeling the direct solar irradiance. J Sol Energy Eng 128(3):394–405

    Article  Google Scholar 

  24. Lauret P, Fock E, Mara TA (2006) A node pruning algorithm based on a fourier amplitude sensitivity test method. IEEE Trans Neural Netw 17(2):273–293

    Article  Google Scholar 

  25. Lauret P, Fock E, Randrianarivony RN, Manicom-Ramsamy JF (2008) Bayesian neural network approach to short time load forecasting. Energy Convers Manag 49(5):1156–1166

    Article  Google Scholar 

  26. Lauret P, Voyant C, Soubdhan T, David M, Poggi P (2015) A benchmarking of machine learning techniques for solar radiation forecasting in an insular context. Sol Energy 112:446–457

    Article  Google Scholar 

  27. Lefevre M, Oumbe A, Blanc P, Espinar B, Gschwind B, Qu Z, Wald L, Schroedter-Homscheidt M, Hoyer-Klick C, Arola A et al (2013) Mcclear: a new model estimating downwelling solar radiation at ground level in clear-sky conditions. Atmos Meas Tech 6(9):2403–2418

    Article  Google Scholar 

  28. Lorenz E, Heinemann D (2012) Prediction of solar irradiance and photovoltaic power—Comprehensive Renewable Energy. Elsevier, Oxford, pp 239–292

    Chapter  Google Scholar 

  29. MacKay DJ (1992) A practical bayesian framework for backpropagation networks. Neural Comput 4(3):448–472

    Article  Google Scholar 

  30. MacKay DJ (2003) Information theory, inference and learning algorithms. Cambridge university press

    Google Scholar 

  31. Mazorra Aguiar L, Pereira B, David M, Daz F, Lauret P (2015) Use of satellite data to improve solar radiation forecasting with bayesian artificial neural networks. Solar Energy

    Article  Google Scholar 

  32. Penny WD, Roberts SJ (1999) Bayesian neural networks for classification: how useful is the evidence framework? Neural Netw 12(6):877–892

    Article  Google Scholar 

  33. Perez R, Kivalov S, Schlemmer J, Hemker K, Renné D, Hoff TE (2010) Validation of short and medium term operational solar radiation forecasts in the US. Sol Energy 84(12):2161–2172

    Article  Google Scholar 

  34. Perez R, Lorenz E, Pelland S, Beauharnois M, Van Knowe G, Hemker K, Heinemann D, Remund J, Müller SC, Traunmüller W et al (2013) Comparison of numerical weather prediction solar irradiance forecasts in the US, Canada and Europe. Sol Energy 94:305–326

    Article  Google Scholar 

  35. Perez R, Moore K, Wilcox S, Renné D, Zelenka A (2007) Forecasting solar radiation-preliminary evaluation of an approach based upon the national forecast database. Sol Energy 81(6):809–812

    Article  Google Scholar 

  36. Petruccelli JD, Nandram B, Chen M (1999) Applied statistics for engineers and scientists. Prentice Hall New Jersey

    Google Scholar 

  37. Polo J, Zarzalejo LF, Salvador P, Ramírez L (2009) Angstrom turbidity and ozone column estimations from spectral solar irradiance in a semi-desertic environment in Spain. Sol Energy 83(2):257–263

    Article  Google Scholar 

  38. Reno MJ, Hansen CW (2016) Identification of periods of clear sky irradiance in time series of ghi measurements. Renew Energy 90:520–531

    Article  Google Scholar 

  39. Reno MJ, Hansen CW, Stein JS (2012) Global horizontal irradiance clear sky models: implementation and analysis. SANDIA report SAND2012-2389

    Google Scholar 

  40. Schulz J, Albert P, Behr HD, Caprion D, Deneke H, Dewitte S, Durr B, Fuchs P, Gratzki A, Hechler P et al (2009) Operational climate monitoring from space: the eumetsat satellite application facility on climate monitoring (cm-saf). Atmos Chem Phys 9(5):1687–1709

    Article  Google Scholar 

  41. Scientist CS (2016) Annual product quality assessment report 2015. EUMETSAT Satellite Application Facility on Climate Monitoring

    Google Scholar 

  42. Sengupta M, Habte A, Kurtz S, Dobos A, Wilbert S, Lorenz E, Stoffel T, Renné D, Gueymard C, Myers D et al (2015) Best practices handbook for the collection and use of solar resource data for solar energy applications. NREL

    Google Scholar 

  43. Transvalor MP (2014) Soda solar radiation data http://www.soda-pro.com/. Accessed 2017

  44. Trentmannn J, Huld T (2016) Meteosat-east solar surface irradiance data records. EUMETSAT Satellite Application Facility on Climate Monitoring

    Google Scholar 

  45. Urquhart B, Ghonima M, Nguyen D, Kurtz B, Chow C, Kleissl J (2013) Sky imaging systems for short-term forecasting. J Elsevier, Waltham, Massachusetts, Kleissl

    Chapter  Google Scholar 

  46. Wittmann M, Breitkreuz H, Schroedter-Homscheidt M, Eck M (2008) Case studies on the use of solar irradiance forecast for optimized operation strategies of solar thermal power plants. IEEE J Sel Top Appl Earth Obs Remote Sens 1(1):18–27

    Article  Google Scholar 

  47. Younes S, Muneer T (2007) Clear-sky classification procedures and models using a world-wide data-base. Appl Energy 84(6):623–645

    Article  Google Scholar 

  48. Zagouras A, Pedro HT, Coimbra CF (2015) On the role of lagged exogenous variables and spatio-temporal correlations in improving the accuracy of solar forecasting methods. Renew Energy 78:203–218

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis Mazorra-Aguiar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mazorra-Aguiar, L., Díaz, F. (2018). Solar Radiation Forecasting with Statistical Models. In: Perez, R. (eds) Wind Field and Solar Radiation Characterization and Forecasting. Green Energy and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-76876-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-76876-2_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-76875-5

  • Online ISBN: 978-3-319-76876-2

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics