Skip to main content

Defects in Indium-Related Nitride Compounds and Structural Design of AlN/GaN Superlattices

  • Chapter
  • First Online:
Epitaxial Growth of III-Nitride Compounds

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 269))

  • 666 Accesses

Abstract

In this chapter, we focus on two topics related to the electronic and optical properties of III-nitride compounds. By applying of ab initio approach, we can analyze the electronic structures of III-nitride compounds as well as other semiconductors. This is exemplified by theoretical analysis of electronic structures of In-related nitride compounds, which exhibit characteristic behavior originating from the large difference in the covalent radius between In and N atoms. By considering atomic and electronics structures of nitrogen vacancy (VN) in InGaN in detail, the second nearest neighbor In–In interaction are crucial for unusually narrow bandgap of InN. Furthermore, this approach is applied to demonstrate AlN/GaN superlattice in the wurtzite phase with one or two GaN monolayers, which is efficient for near-band-edge c-plane emission of deep-ultraviolet (UV) LEDs. In particular, the emission wavelength is estimated to be 224 nm for the AlN/GaN superlattice with one GaN-monolayer, which is remarkably shorter than that for Al-rich AlGaN alloys. The optical matrix element of such superlattice is found to be 57% relative to the GaN bulk value.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 79.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, Y. Sugimoto, InGaN-based multi-quantum-well-structure laser diodes. Jpn. J. Appl. Phys. 37, L74 (1996)

    Article  Google Scholar 

  2. T. Matsuoka, H. Okamoto, M. Nakao, H. Harima, E. Kurimoto, Optical bandgap energy of wurtzite InN. Appl. Phys. Lett. 81, 1246 (2002)

    Article  CAS  Google Scholar 

  3. V.Y. Davydov, A.A. Klochikhin, V.V. Emtsev, S.V. Ivanov, V.V. Vekshin, F. Bechstedt, J. Fürthmuller, H. Harima, A.V. Mudryi, A. Hashimoto, A. Yamamoto, J. Aderhold, J. Graul, E.E. Haller, Band gap of InN and In-rich In x Ga1-xN alloys (0.36 < x < 1). Phys. Status Solidi B 230, R4 (2002)

    Article  CAS  Google Scholar 

  4. Y. Nanishi, Y. Saito, T. Yamaguchi, RF-molecular beam epitaxy growth and properties of InN and related alloys. Jpn. J. Appl. Phys. 42, 2549 (2003)

    Article  CAS  Google Scholar 

  5. M. Usuda, N. Hamada, K. Shiraishi, A. Oshiyama, Band structures of wurtzite InN and Ga1-xIn x N by all-electron GW calculation. Jpn. J. Appl. Phys. 43, L407 (2004)

    Article  CAS  Google Scholar 

  6. M. Otani, K. Shiraishi, A. Oshiyama, First-principles calculations of boron-related defects in SiO2. Phys. Rev. B. 68, 184112 (2003)

    Article  Google Scholar 

  7. D.J. Chadi, K.J. Chang, Magic numbers for vacancy aggregation in crystalline Si. Phys. Rev. B 38, 1523 (1988)

    Article  CAS  Google Scholar 

  8. C.G. Van de Walle, J. Neugebauer, First-principles calculations for defects and impurities: Applications to III-nitrides. J. Appl. Phys. 95, 3851 (2004)

    Article  Google Scholar 

  9. T. Akiyama, A. Oshiyama, O. Sugino, Magic numbers of multivacancy in crystalline Si: tight-binding studies for the stability of the multivacancy. J. Phys. Soc. Jpn. 67, 4110 (1998)

    Article  CAS  Google Scholar 

  10. T. Akiyama, A. Oshiyama, First-principles study of hydrogen incorporation in multivacancy in silicon. J. Phys. Soc. Jpn. 70, 1627 (2001)

    Article  CAS  Google Scholar 

  11. M. Fuchs, J.L.F. DaSilva, C. Stampfl, J. Neugebauer, M. Scheffler, Cohesive properties of group-III nitrides: A comparative study of all-electron and pseudopotential calculations using the generalized gradient approximation. Phys. Rev. B 65, 245212 (2002)

    Article  Google Scholar 

  12. T. Obata, J.-I. Iwata, K. Shiraishi, A. Oshiyama, First principles studies on In-related nitride compounds. J. Cryst. Growth 311, 2772 (2009)

    Article  CAS  Google Scholar 

  13. X.M. Duan, C. Stampfl, Nitrogen vacancies in InN: vacancy clustering and metallic bonding from first principles. Phys. Rev. B 77, 115207 (2008)

    Article  Google Scholar 

  14. K.E. Newman, J.D. Dow, Theory of deep impurities in silicon-germanium alloys. Phys. Rev. B 30, 1929 (1984)

    Article  CAS  Google Scholar 

  15. T. Nishida, N. Kobayashi, 346 nm emission from AlGaN multi-quantum-well light emitting diode. Phys. Status Solidi A 176, 45 (1999)

    Article  CAS  Google Scholar 

  16. V. Adivarahan, W.H. Sun, A. Chitnis, M. Shatalov, S. Wu, H.P. Maruska, M.A. Khan, 250 nm AlGaN light-emitting diodes. Appl. Phys. Lett. 85, 2175 (2004)

    Article  CAS  Google Scholar 

  17. M.A. Khan, M. Shatalov, H.P. Maruska, H.M. Wang, E. Kuokstis, III–nitride UV devices. Jpn. J. Appl. Phys. 44, 7191 (2005)

    Article  CAS  Google Scholar 

  18. Y. Taniyasu, M. Kasu, T. Makimoto, An aluminium nitride light-emitting diode with a wavelength of 210 nanometres. Nature (London) 441, 325 (2006)

    Article  CAS  Google Scholar 

  19. A.A. Yamaguchi, Anisotropic optical matrix elements in strained GaN quantum wells on semipolar and nonpolar substrates. Jpn. J. Appl. Phys. 46, L789 (2007)

    Article  CAS  Google Scholar 

  20. A.A. Yamaguchi, Valence band engineering for remarkable enhancement of surface emission in AlGaN deep-ultraviolet light emitting diodes. Phys. Status Solidi C 5, 2364 (2008)

    Article  CAS  Google Scholar 

  21. Y. Taniyasu, M. Kasu, Origin of exciton emissions from an AlN p-n junction light-emitting diode. Appl. Phys. Lett. 98, 131910 (2011)

    Article  Google Scholar 

  22. M. Suzuki, T. Uenoyama, A. Yanase, First-principles calculations of effective-mass parameters of AlN and GaN. Phys. Rev. B 52, 8132 (1995)

    Article  CAS  Google Scholar 

  23. S.-H. Wei, A. Zunger, Valence band splittings and band offsets of AlN, GaN, and InN. Appl. Phys. Lett. 69, 2719 (1996)

    Article  CAS  Google Scholar 

  24. K. Kim, W.R.L. Lambrecht, B. Segall, M. van Schilfgaarde, Effective masses and valence-band splittings in GaN and AlN. Phys. Rev. B 56, 7363 (1997)

    Article  CAS  Google Scholar 

  25. D.C. Reynolds, D.C. Look, W. Kim, Ö. Aktas, A. Botchkarev, A. Salvador, H. Morkoç, D.N. Talwar, Ground and excited state exciton spectra from GaN grown by molecular-beam epitaxy. J. Appl. Phys. 80, 594 (1996)

    Article  CAS  Google Scholar 

  26. I. Vurgaftman, J.R. Meyer, Band parameters for nitrogen-containing semiconductors. J. Appl. Phys. 94, 3675 (2003)

    Article  CAS  Google Scholar 

  27. H. Kawanishi, E. Niikura, M. Yamamoto, S. Takeda, Experimental energy difference between heavy- or light-hole valence band and crystal-field split-off-hole valence band in Al x Ga1−xN. Appl. Phys. Lett. 89, 251107 (2006)

    Article  Google Scholar 

  28. K. Kamiya, Y. Ebihara, M. Kasu, K. Shiraishi, Efficient structure for deep-ultraviolet light-emitting diodes with high emission efficiency: a first-principles study of AlN/GaN superlattice. Jpn. J. Appl. Phys. 51, 02BJ11 (2012)

    Article  Google Scholar 

  29. K. Kamiya, Y. Ebihara, K. Shiraishi, M. Kasu, Structural design of AlN/GaN superlattices for deep-ultraviolet light-emitting diodes with high emission efficiency. Appl. Phys. Lett. 99, 151108 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenji Shiraishi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shiraishi, K. (2018). Defects in Indium-Related Nitride Compounds and Structural Design of AlN/GaN Superlattices. In: Matsuoka, T., Kangawa, Y. (eds) Epitaxial Growth of III-Nitride Compounds. Springer Series in Materials Science, vol 269. Springer, Cham. https://doi.org/10.1007/978-3-319-76641-6_9

Download citation

Publish with us

Policies and ethics