Skip to main content

Modeling Electronic Properties of Twisted 2D Atomic Heterostructures

  • Conference paper
  • First Online:
Coupled Mathematical Models for Physical and Biological Nanoscale Systems and Their Applications (BIRS-16w5069 2016)

Abstract

We present a general method for the electronic characterization of aperiodic 2D materials using ab-initio tight binding models. Specifically studied is the subclass of twisted, stacked heterostructures, but the formalism provided can be implemented for any 2D system without long-range interactions. This new method provides a multi-scale approach for dealing with the ab-initio calculation of electronic transport properties in stacked nanomaterials, allowing for fast and efficient simulation of multi-layered stacks in the presence of twist angles, magnetic field, and defects. We calculate the electronic density of states in twisted bilayer systems of graphene and MX\(_2\) transition metal dichalcogenides (TMDCs). We comment on the interesting features of their density of states as a function of twist-angle and local configuration and how these features are experimentally observable. These results support the bilayer twist-angle as a new variable for controlling electronic properties in artificial nanomaterials (“Twistronics”).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. A. Ayari, E. Cobas, O. Ogundadegbe, M.S. Fuhrer, Realization and electrical characterization of ultrathin crystals of layered transition-metal dichalcogenides. J. Appl. Phys. 101(1), 014,507 (2007), https://doi.org/10.1063/1.2407388, http://scitation.aip.org/content/aip/journal/jap/101/1/10.1063/1.2407388

  2. J. Bellissard, A. van Elst, H. Schulz-Baldes, The noncommutative geometry of the quantum Hall effect. J. Math. Phys. 35(10), 5373 (1994), https://doi.org/10.1063/1.530758, http://scitation.aip.org/content/aip/journal/jmp/35/10/10.1063/1.530758

  3. R. Bistritzer, A.H. MacDonald, Moire bands in twisted double-layer graphene. Proc. Natl. Acad. Sci. United States of America 108(30), 12,233–7 (2011), https://doi.org/10.1073/pnas.1108174108, http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3145708&tool=pmcentrez&rendertype=abstract

  4. I. Brihuega, P. Mallet, H. González-Herrero, G. Trambly de Laissardière, M.M. Ugeda, L. Magaud, J.M. Gómez-Rodríguez, F. Ynduráin, J.Y. Veuillen, Unraveling the intrinsic and robust nature of van Hove singularities in twisted bilayer graphene by scanning tunneling microscopy and theoretical analysis. Phys. Rev. Lett. 109(19), 196,802 (2012), https://doi.org/10.1103/PhysRevLett.109.196802, http://www.ncbi.nlm.nih.gov/pubmed/23215414

  5. Y. Cao, J.Y. Luo, V. Fatemi, S. Fang, J.D. Sanchez-Yamagishi, K. Watanabe, T. Taniguchi, E. Kaxiras, P. Jarillo-Herrero, Superlattice-induced insulating states and valley-protected orbits in twisted bilayer graphene. Phys. Rev. Lett. 117(11), 116,804 (2016), https://doi.org/10.1103/PhysRevLett.117.116804, http://link.aps.org/doi/10.1103/PhysRevLett.117.116804

  6. A.H. Castro Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, A.K. Geim, The electronic properties of graphene. Rev. Mod. Phys. 81(1), 109–162 (2009), https://doi.org/10.1103/RevModPhys.81.109, http://link.aps.org/doi/10.1103/RevModPhys.81.109

  7. H. Chen, C. Ortner, QM/MM methods for crystalline defects. Part 1: locality of the tight binding model. SIAM Multiscale Model. Simul. 14(1), 232–264 (2016), https://doi.org/10.1137/15M1022628, arXiv:1505.05541

  8. S. Fang, E. Kaxiras, Electronic structure theory of weakly interacting bilayers. Phys. Rev. B 93(23), 235,153 (2016), https://doi.org/10.1103/PhysRevB.93.235153, http://link.aps.org/doi/10.1103/PhysRevB.93.235153

  9. S. Fang, R. Kuate Defo, S.N. Shirodkar, S. Lieu, G.A. Tritsaris, E. Kaxiras, Ab initio tight-binding Hamiltonian for transition metal dichalcogenides. Phys. Rev. B 92(20), 205,108 (2015), https://doi.org/10.1103/PhysRevB.92.205108, http://link.aps.org/doi/10.1103/PhysRevB.92.205108

  10. A.K. Geim, I.V. Grigorieva, Van der Waals heterostructures. Nature 499(7459), 419–425 (2013), https://doi.org/10.1038/nature12385, http://www.ncbi.nlm.nih.gov/pubmed/23887427, http://www.nature.com/doifinder/10.1038/nature12385

  11. E. Prodan, Quantum transport in disordered systems under magnetic fields: a study based on operator algebras. Appl. Math. Res. eXpress 2, 176–265 (2012), https://doi.org/10.1093/amrx/abs017, http://amrx.oxfordjournals.org/content/early/2012/10/23/amrx.abs017.short, http://amrx.oxfordjournals.org/cgi/doi/10.1093/amrx/abs017

  12. B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, A. Kis, Single-layer MoS2 transistors. Nat. Nanotech. 6(3), 147–50 (2011), https://doi.org/10.1038/nnano.2010.279, http://www.ncbi.nlm.nih.gov/pubmed/21278752

  13. A. Rozhkov, A. Sboychakov, A. Rakhmanov, F. Nori, Electronic properties of graphene-based bilayer systems. Phys. Rep. 648, 1–104 (2016), https://doi.org/10.1016/j.physrep.2016.07.003, http://linkinghub.elsevier.com/retrieve/pii/S0370157316301612

  14. P. San-Jose, J. González, F. Guinea, Non-Abelian gauge potentials in graphene bilayers. Phys. Rev. Lett. 108(21), 216,802 (2012), https://doi.org/10.1103/PhysRevLett.108.216802, http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.108.216802, http://www.ncbi.nlm.nih.gov/pubmed/23003289

  15. K. Uchida, S. Furuya, J.I. Iwata, A. Oshiyama, Atomic corrugation and electron localization due to Moiré patterns in twisted bilayer graphenes. Phys. Rev. B 90(15), 155,451 (2014). https://doi.org/10.1103/PhysRevB.90.155451, http://link.aps.org/doi/10.1103/PhysRevB.90.155451

  16. A. Weisse, G. Wellein, A. Alvermann, H. Fehske, The kernel polynomial method. Rev. Mod. Phys. 78(1), 275–306 (2006), https://doi.org/10.1103/RevModPhys.78.275, http://link.aps.org/doi/10.1103/RevModPhys.78.275

  17. D. Wong, Y. Wang, J. Jung, S. Pezzini, A.M. DaSilva, H.Z. Tsai, H.S. Jung, R. Khajeh, Y. Kim, J. Lee, S. Kahn, S. Tollabimazraehno, H. Rasool, K. Watanabe, T. Taniguchi, A. Zettl, S. Adam, A.H. MacDonald, M.E. Crommie, Local spectroscopy of moiré-induced electronic structure in gate-tunable twisted bilayer graphene. Phys. Rev. B 92(15), 155,409 (2015), https://doi.org/10.1103/PhysRevB.92.155409, http://link.aps.org/doi/10.1103/PhysRevB.92.155409

  18. C.R. Woods, L. Britnell, A. Eckmann, R.S. Ma, J.C. Lu, H.M. Guo, X. Lin, G.L. Yu, Y. Cao, R.V. Gorbachev, A.V. Kretinin, J. Park, L.A. Ponomarenko, M.I. Katsnelson, Y.N. Gornostyrev, K. Watanabe, T. Taniguchi, C. Casiraghi, H.J. Gao, A.K. Geim, K.S. Novoselov, Commensurateincommensurate transition in graphene on hexagonal boron nitride. Nat. Phys. 10(6), 451–456 (2014), https://doi.org/10.1038/nphys2954, http://www.nature.com/nphys/journal/v10/n6/abs/nphys2954.html, http://www.nature.com/doifinder/10.1038/nphys2954

  19. L.J. Yin, J.B. Qiao, W.J. Zuo, W.T. Li, L. He, Experimental evidence for non-Abelian gauge potentials in twisted graphene bilayers. Phys. Rev. B 92(8), 081,406 (2015), https://doi.org/10.1103/PhysRevB.92.081406, http://link.aps.org/doi/10.1103/PhysRevB.92.081406

Download references

Acknowledgements

We acknowledge S. Shirodkar for providing the Li-ion itercalated graphene calculations shown in Fig. 3c and B.I. Halperin and D. Huang for helpful discussions. The computations in this paper were run on the Odyssey cluster supported by the FAS Division of Science, Research Computing Group at Harvard University. This work was supported by the ARO MURI Award No. W911NF-14-0247. SF is supported by the STC Center for Integrated Quantum Materials, NSF Grant No. DMR-1231319.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen Carr .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Carr, S., Massatt, D., Fang, S., Cazeaux, P., Luskin, M., Kaxiras, E. (2018). Modeling Electronic Properties of Twisted 2D Atomic Heterostructures. In: Bonilla, L., Kaxiras, E., Melnik, R. (eds) Coupled Mathematical Models for Physical and Biological Nanoscale Systems and Their Applications. BIRS-16w5069 2016. Springer Proceedings in Mathematics & Statistics, vol 232. Springer, Cham. https://doi.org/10.1007/978-3-319-76599-0_13

Download citation

Publish with us

Policies and ethics