Skip to main content

Laser-Tissue Interactions

  • Chapter
  • First Online:
Lasers in Dermatology and Medicine

Abstract

The best gauge of laser interactions is the tissue response, and experiment is the most realistic manner to address medical treatment challenges. However, theoretical models are helpful in planning treatment approaches and laser parameters. In this chapter we discuss basics of lasers, their non laser counterparts, and laser-tissue interactions.

Many physicians choose laser settings out of habit (or reading it off of a label attached to the side of the machine—a “cheat” sheet with skin-type specific parameters), using tissue endpoints to confirm the appropriateness of the parameters. For example, when treating a tattoo with a Q-switched laser, the operator looks for immediate frosty whitening. Like driving a car (where the operator may have no idea about nature of the drive train components), successful laser operation does not demand a complete understanding of the machine or the details of the light-tissue interaction. However, a comprehension of first principles allows for a logical analysis of final clinical outcomes—furthermore, more creative uses of equipment should follow. For example, with an education in laser tissue interactions (LTIs) and tissue cooling, one can deploy the alexandrite (long pulse) laser either as a hair removal device, vascular laser, or to remove lentigines.

The reader should note that although the title of this chapter is “Laser Tissue Interactions”, the introduction of many new and diverse technologies make the term somewhat obsolete. We will continue to use the term, but a more appropriate term is “energy–tissue interactions.” As both radiofrequency and ultrasound are increasingly applied in medicine. We will use both terms interchangeably in the remainder of the text.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jacques SL. Laser-tissue interactions. Photochemical, photothermal, and photomechanical. Surg Clin North Am. 1992;72:531–58.

    CAS  PubMed  Google Scholar 

  2. Ross E, Anderson R. Laser tissue interactions. In: Goldman M, editor. Cutaneous and cosmetic laser surgery. Philadelphia, PA: Elsevier; 2006.

    Google Scholar 

  3. Anderson RR, Parrish JA. The optics of human skin. J Invest Dermatol. 1981;77:13–9.

    CAS  PubMed  Google Scholar 

  4. Grossweiner L. The science of phototherapy. Boca Raton, FL: CRC Press; 1994.

    Google Scholar 

  5. Wan S, Anderson RR, Parrish JA. Analytical modeling for the optical properties of the skin with in vitro and in vivo applications. Photochem Photobiol. 1981;34:493–9.

    CAS  PubMed  Google Scholar 

  6. van Gemert MJ, Jacques SL, Sterenborg HJ, et al. Skin optics. IEEE Trans Biomed Eng. 1989;36:1146–54.

    PubMed  Google Scholar 

  7. Jacques S. Skin optics summary. http://www.omlc.ogi.edu/news/jan98/skinoptics.html. Accessed September 2007.

  8. Jacques SL, Prahl SA. Modeling optical and thermal distributions in tissue during laser irradiation. Lasers Surg Med. 1987;6:494–503.

    CAS  PubMed  Google Scholar 

  9. Hillenkamp F. Interaction between laser radiation and biological systems. In: Hillenkamp FRP, Sacchi C, editors. Lasers in medicine and biology, Series A. New York, NY: Plenum; 1980. p. 37–68.

    Google Scholar 

  10. Anderson R, Ross E. Laser-tissue interactions. In: Fitzpatrick R, Goldman M, editors. Cosmetic laser surgery. St. Louis, MO: Mosby; 2000. p. 1–30.

    Google Scholar 

  11. Katzir A. Lasers and optical fibers in medicine. San Diego, CA: Academic; 1993.

    Google Scholar 

  12. Ross EV. Laser versus intense pulsed light: competing technologies in dermatology. Lasers Surg Med. 2006;38:261–72.

    PubMed  Google Scholar 

  13. Anderson R. Laser tissue interactions. In: Goldman M, Fitzparick R, editors. Cutaneous laser surgery-the art and science of selective photothermolysis. St. Louis, MO: Mosby; 1994. p. 3–5.

    Google Scholar 

  14. Reinisch L. Laser physics and tissue interactions. Otolaryngol Clin North Am. 1996;29:893–914.

    CAS  PubMed  Google Scholar 

  15. Ross EV, Smirnov M, Pankratov M, et al. Intense pulsed light and laser treatment of facial telangiectasias and dyspigmentation: some theoretical and practical comparisons. Dermatol Surg. 2005;31:1188–98.

    CAS  PubMed  Google Scholar 

  16. Boulnois J. Photophysical processes in recent medical laser developments - a review. Lasers Med Sci. 1986;1:47–66.

    Google Scholar 

  17. Welch AJ, van Gemert MJ. Overview of optical and thermal interaction and nomenclature. In: Welch AJ, van Gemert MJ, editors. Optical thermal response of laser-irradiated tissue. New York, NY: Plenum; 1995. p. 1–14.

    Google Scholar 

  18. Fisher JC. Basic biophysical principles of resurfacing of human skin by means of the carbon dioxide laser. J Clin Laser Med Surg. 1996;14:193–210.

    CAS  PubMed  Google Scholar 

  19. Tanghetti E, Sierra RA, Sherr EA, et al. Evaluation of pulse-duration on purpuric threshold using extended pulse pulsed dye laser (cynosure V-star). Lasers Surg Med. 2002;31:363–6.

    PubMed  Google Scholar 

  20. Reinisch L, Ossoff RH. Laser applications in otolaryngology. Otolaryngol Clin North Am. 1996;29:891–2.

    CAS  PubMed  Google Scholar 

  21. Shafirstein G, Baumler W, Lapidoth M, et al. A new mathematical approach to the diffusion approximation theory for selective photothermolysis modeling and its implication in laser treatment of portwine stains. Lasers Surg Med. 2004;34:335–47.

    PubMed  Google Scholar 

  22. Raulin C, Greve B, Warncke SH, et al. Excimer laser. Treatment of iatrogenic hypopigmentation following skin resurfacing. Hautarzt. 2004;55:746–8.

    CAS  PubMed  Google Scholar 

  23. Alexiades-Armenakas MR, Bernstein LJ, Friedman PM, et al. The safety and efficacy of the 308-nm excimer laser for pigment correction of hypopigmented scars and striae alba. Arch Dermatol. 2004;140:955–60.

    PubMed  Google Scholar 

  24. Gold MH, Goldman MP. 5-aminolevulinic acid photodynamic therapy: where we have been and where we are going. Dermatol Surg. 2004;30:1077–83.

    PubMed  Google Scholar 

  25. Itkin A, Gilchrest BA. delta-Aminolevulinic acid and blue light photodynamic therapy for treatment of multiple basal cell carcinomas in two patients with nevoid basal cell carcinoma syndrome. Dermatol Surg. 2004;30:1054–61.

    PubMed  Google Scholar 

  26. Anderson RR, Parrish JA. Selective photothermolysis: precise microsurgery by selective absorption of pulsed radiation. Science. 1983;220:524–7.

    CAS  PubMed  Google Scholar 

  27. Anderson RR, Parrish JA. Lasers in dermatology provide a model for exploring new applications in surgical oncology. Int Adv Surg Oncol. 1982;5:341–58.

    CAS  PubMed  Google Scholar 

  28. Anderson RR, Parrish JA. Microvasculature can be selectively damaged using dye lasers: a basic theory and experimental evidence in human skin. Lasers Surg Med. 1981;1:263–76.

    CAS  PubMed  Google Scholar 

  29. Black JF, Barton JK. Chemical and structural changes in blood undergoing laser photocoagulation. Photochem Photobiol. 2004;80:89–97.

    CAS  PubMed  Google Scholar 

  30. Kono T, Manstein D, Chan HH, et al. Q-switched ruby versus longpulsed dye laser delivered with compression for treatment of facial lentigines in Asians. Lasers Surg Med. 2006;38:94–7.

    PubMed  Google Scholar 

  31. Avram DK, Goldman MP. Effectiveness and safety of ALA-IPL in treating actinic keratoses and photodamage. J Drugs Dermatol. 2004;3(Suppl 1):S36–9.

    PubMed  Google Scholar 

  32. Gold MH, Bradshaw VL, Boring MM, et al. The use of a novel intense pulsed light and heat source and ALA-PDT in the treatment of moderate to severe inflammatory acne vulgaris. J Drugs Dermatol. 2004;3(Suppl 6):S15–9.

    PubMed  Google Scholar 

  33. Trafeli JP, Kwan JM, Meehan KJ, et al. Use of a long-pulse alexandrite laser in the treatment of superficial pigmented lesions. Dermatol Surg. 2007;33:1477–82.

    CAS  PubMed  Google Scholar 

  34. McDaniel DH, Ash K, Lord J, et al. Laser therapy of spider leg veins: clinical evaluation of a new long pulsed alexandrite laser. Dermatol Surg. 1999;25:52–8.

    CAS  PubMed  Google Scholar 

  35. Dover JS. New approaches to the laser treatment of vascular lesions. Australas J Dermatol. 2000;41:14–8.

    CAS  PubMed  Google Scholar 

  36. Kauvar AN, Lou WW. Pulsed alexandrite laser for the treatment of leg telangiectasia and reticular veins. Arch Dermatol. 2000;136:1371–5.

    CAS  PubMed  Google Scholar 

  37. Eremia S, Li C, Umar SH. A side-by-side comparative study of 1064 nm Nd:YAG, 810 nm diode and 755 nm alexandrite lasers for treatment of 0.3-3 mm leg veins. Dermatol Surg. 2002;28:224–30.

    PubMed  Google Scholar 

  38. Passeron T, Olivier V, Duteil L, et al. The new 940-nanometer diode laser: an effective treatment for leg venulectasia. J Am Acad Dermatol. 2003;48:768–74.

    PubMed  Google Scholar 

  39. Paithankar DY, Clifford JM, Saleh BA, et al. Subsurface skin renewal by treatment with a 1450-nm laser in combination with dynamic cooling. J Biomed Opt. 2003;8:545–51.

    PubMed  Google Scholar 

  40. Zelickson B, Ross V, Kist D, et al. Ultrastructural effects of an infrared handpiece on forehead and abdominal skin. Dermatol Surg. 2006;32:897–901.

    CAS  PubMed  Google Scholar 

  41. Majaron B, Verkruysse W, Kelly KM, et al. Er:YAG laser skin resurfacing using repetitive long-pulse exposure and cryogen spray cooling: II. Theoretical analysis. Lasers Surg Med. 2001;28:131–8.

    CAS  PubMed  Google Scholar 

  42. Majaron B, Kelly KM, Park HB, et al. Er:YAG laser skin resurfacing using repetitive long-pulse exposure and cryogen spray cooling: I. Histological study. Lasers Surg Med. 2001;28:121–31.

    CAS  PubMed  Google Scholar 

  43. Ross EV, Yashar SS, Naseef GS, et al. A pilot study of in vivo immediate tissue contraction with CO2 skin laser resurfacing in a live farm pig. Dermatol Surg. 1999;25:851–6.

    CAS  PubMed  Google Scholar 

  44. Ross EV, Grossman MC, Duke D, et al. Long-term results after CO2 laser skin resurfacing: a comparison of scanned and pulsed systems. J Am Acad Dermatol. 1997;37:709–18.

    CAS  PubMed  Google Scholar 

  45. Pearce J, Thomsen SL. Rate process analysis of thermal damage. In: Welch AJ, van Gemert MJ, editors. Optical thermal response of laser-irradiated tissue. New York, NY: Plenum; 1995. p. 561–608.

    Google Scholar 

  46. Welch AJ, Yoon G, van Gemert MJ. Practical models for light distribution in laser-irradiated tissue. Lasers Surg Med. 1987;6:488–93.

    CAS  PubMed  Google Scholar 

  47. Wang L, Jacques S, Zheng L. MCML - Monte Carlo modeling of photon transport in multi-layered tissues. Comput Methods Programs Biomed. 1995;47:131.

    CAS  PubMed  Google Scholar 

  48. Jacques S. Simple optical theory for light dosimetry during PDT. In: Tuchin V, editor. Selected papers on tissue optics, MS 102, vol. 655. Bellingham, WA: SPIE - International Society for Optical Engineering; 1992.

    Google Scholar 

  49. Stamatas GN, Kollias N. Blood stasis contributions to the perception of skin pigmentation. J Biomed Opt. 2004;9:315–22.

    PubMed  Google Scholar 

  50. Niemz M. Laser-tissue interactions. 2nd ed. Berlin: Springer; 2002.

    Google Scholar 

  51. Anderson RR, Farinelli W, Laubach H, et al. Selective photothermolysis of lipid-rich tissues: a free electron laser study. Lasers Surg Med. 2006;38:913–9.

    PubMed  Google Scholar 

  52. Ellis DL, Weisberg NK, Chen JS, et al. Free electron laser infrared wavelength specificity for cutaneous contraction. Lasers Surg Med. 1999;25:1–7.

    CAS  PubMed  Google Scholar 

  53. Goldman L, Rockwell RJ. Laser action at the cellular level. JAMA. 1966;198:641–4.

    CAS  PubMed  Google Scholar 

  54. Anderson RR. Laser medicine in dermatology. J Dermatol. 1996;23:778–82.

    CAS  PubMed  Google Scholar 

  55. Altshuler GB, Anderson RR, Manstein D, et al. Extended theory of selective photothermolysis. Lasers Surg Med. 2001;29:416–32.

    CAS  PubMed  Google Scholar 

  56. Anderson RR, Margolis RJ, Watenabe S, et al. Selective photothermolysis of cutaneous pigmentation by Q-switched Nd: YAG laser pulses at 1064, 532, and 355 nm. J Invest Dermatol. 1989;93:28–32.

    CAS  PubMed  Google Scholar 

  57. Parrish JA, Anderson RR, Harrist T, et al. Selective thermal effects with pulsed irradiation from lasers: from organ to organelle. J Invest Dermatol. 1983;80(Suppl):75s–80s.

    CAS  PubMed  Google Scholar 

  58. Anderson RR, Jaenicke KF, Parrish JA. Mechanisms of selective vascular changes caused by dye lasers. Lasers Surg Med. 1983;3:211–5.

    CAS  PubMed  Google Scholar 

  59. Itzkan I, Izatt J. Medical use of lasers. In: Encyclopedia of applied physics. Washington, DC: VCH Publishers, Inc. & American Institute of Physics; 1994. p. 33–59.

    Google Scholar 

  60. Black JF, Wade N, Barton JK. Mechanistic comparison of blood undergoing laser photocoagulation at 532 and 1, 064 nm. Lasers Surg Med. 2005;36:155–65.

    PubMed  Google Scholar 

  61. Polla BS, Anderson RR. Thermal injury by laser pulses: protection by heat shock despite failure to induce heat-shock response. Lasers Surg Med. 1987;7:398–404.

    CAS  PubMed  Google Scholar 

  62. Beckham JT, Mackanos MA, Crooke C, et al. Assessment of cellular response to thermal laser injury through bioluminescence imaging of heat shock protein 70. Photochem Photobiol. 2004;79:76–85.

    CAS  PubMed  Google Scholar 

  63. Kollias N, Gillies R, Moran M, et al. Endogenous skin fluorescence includes bands that may serve as quantitative markers of aging and photoaging. J Invest Dermatol. 1998;111:776–80.

    CAS  PubMed  Google Scholar 

  64. Alexiades-Armenakas MR, Geronemus RG. Laser-mediated photodynamic therapy of actinic cheilitis. J Drugs Dermatol. 2004;3:548–51.

    PubMed  Google Scholar 

  65. Karrer S, Baumler W, Abels C, et al. Long-pulse dye laser for photodynamic therapy: investigations in vitro and in vivo. Lasers Surg Med. 1999;25:51–9.

    CAS  PubMed  Google Scholar 

  66. Seguchi K, Kawauchi S, Morimoto Y, et al. Critical parameters in the cytotoxicity of photodynamic therapy using a pulsed laser. Lasers Med Sci. 2002;17:265–71.

    CAS  PubMed  Google Scholar 

  67. Sterenborg HJ, van Gemert MJ. Photodynamic therapy with pulsed light sources: a theoretical analysis. Phys Med Biol. 1996;41:835–49.

    CAS  PubMed  Google Scholar 

  68. Smith TK, Choi B, Ramirez-San-Juan JC, et al. Microvascular blood flow dynamics associated with photodynamic therapy, pulsed dye laser irradiation and combined regimens. Lasers Surg Med. 2006;38:532–9.

    PubMed  Google Scholar 

  69. Parrish JA, Jaenicke KF. Action spectrum for phototherapy of psoriasis. J Investig Dermatol. 1981;76:359–62.

    CAS  PubMed  Google Scholar 

  70. Weiss RA, McDaniel DH, Geronemus RG, et al. Clinical trial of a novel non-thermal LED array for reversal of photoaging: clinical, histologic, and surface profilometric results. Lasers Surg Med. 2005;36:85–91.

    PubMed  Google Scholar 

  71. Hohenleutner U, Walther T, Wenig M, et al. Leg telangiectasia treatment with a 1.5 ms pulsed dye laser, ice cube cooling of the skin and 595 vs 600 nm: preliminary results. Lasers Surg Med. 1998;23:72–8.

    CAS  PubMed  Google Scholar 

  72. Greve B, Hammes S, Raulin C. The effect of cold air cooling on 585 nm pulsed dye laser treatment of port-wine stains. Dermatol Surg. 2001;27:633–6.

    CAS  PubMed  Google Scholar 

  73. Chan HH, Lam LK, Wong DS, et al. Role of skin cooling in improving patient tolerability of Q-switched Alexandrite (QS Alex) laser in nevus of Ota treatment. Lasers Surg Med. 2003;32:148–51.

    PubMed  Google Scholar 

  74. Raulin C, Greve B, Hammes S. Cold air in laser therapy: first experiences with a new cooling system. Lasers Surg Med. 2000;27:404–10.

    CAS  PubMed  Google Scholar 

  75. Huang PS, Chang CJ. Cryogen spray cooling in conjunction with pulse dye laser treatment of port wine stains of the head and neck. Chang Gung Med J. 2001;24:469–75.

    CAS  PubMed  Google Scholar 

  76. Weiss RA, Sadick NS. Epidermal cooling crystal collar device for improved results and reduced side effects on leg telangiectasias using intense pulsed light. Dermatol Surg. 2000;26:1015–8.

    CAS  PubMed  Google Scholar 

  77. Tunnell JW, Nelson JS, Torres JH, et al. Epidermal protection with cryogen spray cooling during high fluence pulsed dye laser irradiation: an ex vivo study. Lasers Surg Med. 2000;27:373–83.

    CAS  PubMed  Google Scholar 

  78. Kelly KM, Nelson JS, Lask GP, et al. Cryogen spray cooling in combination with nonablative laser treatment of facial rhytides. Arch Dermatol. 1999;135:691–4.

    CAS  PubMed  Google Scholar 

  79. Zenzie HH, Altshuler GB, Smirnov MZ, et al. Evaluation of cooling methods for laser dermatology. Lasers Surg Med. 2000;26:130–44.

    CAS  PubMed  Google Scholar 

  80. Almoallim H, Klinkhoff AV, Arthur AB, et al. Laser induced chrysiasis: disfiguring hyperpigmentation following Q-switched laser therapy in a woman previously treated with gold. J Rheumatol. 2006;33:620–1.

    PubMed  Google Scholar 

  81. Trotter MJ, Tron VA, Hollingdale J, et al. Localized chrysiasis induced by laser therapy. Arch Dermatol. 1995;131:1411–4.

    CAS  PubMed  Google Scholar 

  82. Franco W, Childers M, Nelson JS, et al. Laser surgery of port wine stains using local vacuum [corrected] pressure: changes in calculated energy deposition (Part II). Lasers Surg Med. 2007;39:118–27.

    PubMed  Google Scholar 

  83. Childers MA, Franco W, Nelson JS, et al. Laser surgery of port wine stains using local vacuum pressure: changes in skin morphology and optical properties (Part I). Lasers Surg Med. 2007;39:108–17.

    PubMed  Google Scholar 

  84. Manstein D, Herron GS, Sink RK, et al. Fractional photothermolysis: a new concept for cutaneous remodeling using microscopic patterns of thermal injury. Lasers Surg Med. 2004;34:426–38.

    PubMed  Google Scholar 

  85. Jaffe BH, Walsh JT Jr., Water flux from partial-thickness skin wounds: comparative study of the effects of Er:YAG and Ho:YAG lasers. Lasers Surg Med. 1996;18(1):1–9.

    Google Scholar 

  86. Dierickx CC. Hair removal by lasers and intense pulsed light sources. Semin Cutan Med Surg. 2000;19:267–75.

    Google Scholar 

  87. Jasim ZF, Handley JM. Treatment of pulsed dye laser-resistant port wine stain birthmarks. J Am Acad Dermatol. 2007;57:677–82.

    PubMed  Google Scholar 

  88. Choi B, Tsu L, Chen E, et al. Determination of chemical agent optical clearing potential using in vitro human skin. Lasers Surg Med. 2005;36:72–5.

    PubMed  Google Scholar 

  89. Biesman BS, O'Neil MP, Costner C. Rapid, high‐fluence multi‐pass q‐switched laser treatment of tattoos with a transparent perfluorodecalin‐infused patch: A pilot study. Lasers Surg Med. 2015;47(8):613–8.

    PubMed  PubMed Central  Google Scholar 

  90. Lapotko D, Shnip A, Lukianova E. Photothermal responses of individual cells. J Biomed Opt. 2005;10:14006.

    PubMed  Google Scholar 

  91. Anderson RR. Polarized light examination and photography of the skin. Arch Dermatol. 1991;127:1000–5.

    CAS  PubMed  Google Scholar 

  92. Pitsillides CM, Joe EK, Wei X, et al. Selective cell targeting with light-absorbing microparticles and nanoparticles. Biophys J. 2003;84:4023–32.

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Reinisch L. Scatter-limited phototherapy: a model for laser treatment of skin. Lasers Surg Med. 2002;30:381–8.

    PubMed  Google Scholar 

  94. Carniol PJ, Maas CS. Bipolar radiofrequency resurfacing. Facial Plast Surg Clin North Am. 2001;9:337–42.

    CAS  PubMed  Google Scholar 

  95. Ruiz-Esparza J, Gomez JB. The medical face lift: a noninvasive, nonsurgical approach to tissue tightening in facial skin using nonablative radiofrequency. Dermatol Surg. 2003;29:325–32. discussion 32.

    PubMed  Google Scholar 

  96. Sadick NS. Update on non-ablative light therapy for rejuvenation: a review. Lasers Surg Med. 2003;32:120–8.

    PubMed  Google Scholar 

  97. Koch RJ. Radiofrequency nonablative tissue tightening. Facial Plast Surg Clin North Am. 2004;12:339–46.

    PubMed  Google Scholar 

  98. Franco W, et al. Hyperthermic injury to adipocyte cells by selective heating of subcutaneous fat with a novel radiofrequency device: feasibility studies. Lasers Surg Med. 2010;42(5):361–70.

    PubMed  Google Scholar 

  99. Sadick NS, Makino Y. Selective electro-thermolysis in aesthetic medicine: a review. Lasers Surg Med. 2004;34(2):91–7.

    PubMed  Google Scholar 

  100. Zelickson BD, Kist D, Bernstein E, et al. Histological and ultrastructural evaluation of the effects of a radiofrequency-based nonablative dermal remodeling device: a pilot study. Arch Dermatol. 2004;140:204–9.

    PubMed  Google Scholar 

  101. Duck F. Physical properties of tissue. A comprehensive reference book, edited by Francis A. Duck. Med Phys. 1991;18(4):173–834.

    Google Scholar 

  102. Carruthers J, Fabi S, Weiss R. Monopolar radiofrequency for skin tightening: our experience and a review of the literature. Dermatol Surg. 2014;40(Suppl 12):S168–73.

    PubMed  Google Scholar 

  103. Weiss R, et al. Operator independent focused high frequency ISM band for fat reduction: porcine model. Lasers Surg Med. 2013;45(4):235–9.

    PubMed  PubMed Central  Google Scholar 

  104. Fajkosova K, et al. Selective radiofrequency therapy as a non-invasive approach for contactless body contouring and circumferential reduction. J Drugs Dermatol. 2014;13(3):291–6.

    PubMed  Google Scholar 

  105. White WM, Makin IR, Slayton MH, Barthe PG, Gliklich R. Selective transcutaneous delivery of energy to porcine soft tissues using Intense Ultrasound (IUS). Lasers Surg Med. 2008;40(2):67–75.

    PubMed  Google Scholar 

  106. White WM, Makin IR, Barthe PG, Slayton MH, Gliklich RE. Selective creation of thermal injury zones in the superficial musculoaponeurotic system using intense ultrasound therapy: a new target for noninvasive facial rejuvenation. Arch Facial Plast Surg. 2007;9(1):22–9.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edward Victor Ross .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lloyd, A.A., Graves, M.S., Ross, E.V. (2018). Laser-Tissue Interactions. In: Nouri, K. (eds) Lasers in Dermatology and Medicine. Springer, Cham. https://doi.org/10.1007/978-3-319-76118-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-76118-3_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-76116-9

  • Online ISBN: 978-3-319-76118-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics