Skip to main content

An Introduction to the Diversity, Ecology, and Conservation of Saproxylic Insects

  • Chapter
  • First Online:
Saproxylic Insects

Part of the book series: Zoological Monographs ((ZM,volume 1))

Abstract

Much like flowering plants set the stage for an explosion of herbivore and pollinator diversity, the origin of dead wood in early Devonian forests (~400 mya) was followed by an incredible diversification of life, giving rise to some of the most successful morphological adaptations and symbioses on Earth. Approximately one third of all forest insect species worldwide depend directly or indirectly on dying or dead wood (i.e., saproxylic), with major functional groups including wood feeders, fungus feeders, saprophages, and predators. Although beetles and flies dominate saproxylic insect communities worldwide, other orders are represented by a wide variety of species as well, and the composition of these assemblages varies biogeographically. Most notably, termites (Blattodea) and the subsocial beetle family Passalidae are both largely restricted to the tropics where they play a major role in the decomposition process. The large body of European research linking declines of saproxylic insect diversity to reductions in the amount of dead wood and old trees across the landscape serves as a cautionary tale for researchers and land managers working in other parts of the world. The conservation of saproxylic insects everywhere can be promoted by efforts to provide an adequate amount and variety of dead wood and old trees across space and time. The preservation of old-growth forests is also critically important as they support relict populations of the most sensitive species. There is a strong need for research outside the boreal and temperate zones to develop a more global appreciation for the diversity and ecology of saproxylic insects and to inform management strategies for conserving these organisms in subtropical and tropical forests.

Thousands upon thousands of lives would cease and their races become extinct were it not for the occasional death of such a jungle giant as this.

Beebe (1925)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Aanen DK, Eggleton P (2005) Fungus-growing termites originated in African rain forest. Curr Biol 15:851–855

    Article  PubMed  CAS  Google Scholar 

  • Abe T (1987) Evolution of life types in termites. In: Kawano S, Connell JH, Hidaka T (eds) Evolution, coadaptation, and biotic communities. University of Tokyo Press, Tokyo, pp 128–148

    Google Scholar 

  • Abe T, Bignell DE, Higashi M (eds) (2000) Termites: evolution, sociality, symbioses, ecology. Kluwer Academic, Dordrecht

    Google Scholar 

  • Abell KJ, Duan JJ, Bauer L, Lelito JP, Van Driesche RG (2012) The effect of bark thickness on host partitioning between Tetrastichus planipennisi (Hymen: Eulophidae) and Atanycolus spp. (Hymen: Braconidae), two parasitoids of emerald ash borer (Coleop: Buprestidae). Biol Control 63:320–325

    Article  Google Scholar 

  • Abensperg-Traun M (2000) In defence of small habitat islands: Termites (Isoptera) in the Western Australian central wheatbelt, and the importance of dispersal power in species occurrence. Pac Conserv Biol 6:31–39

    Article  Google Scholar 

  • Alexander KNA (2008) Tree biology and saproxylic Coleoptera: issues of definitions and conservation language. Rev Ecol Terre Vie 10:9–13

    Google Scholar 

  • Apolinário FE, Martius C (2004) Ecological role of termites (Insecta, Isoptera) in tree trunks in central Amazonian rain forests. Forest Ecol Manag 194:23–28

    Article  Google Scholar 

  • Ausmus BS (1977) Regulation of wood decomposition rates by arthropod and annelid populations. Ecol Bull 25:180–192

    CAS  Google Scholar 

  • Bayer EA, Chanzy H, Lamed R, Shoham Y (1998) Cellulose, cellulases and cellulosomes. Curr Opin Struct Biol 8:548–557

    Article  PubMed  CAS  Google Scholar 

  • Becker G (1965) Versuche über den einfluss von braunfaulepilzen auf wahl und ausnutzung der holznährung durch termiten. Mater Org 1:95–156

    Google Scholar 

  • Beebe W (1925) Jungle days. G.P. Putnam’s Sons, New York

    Book  Google Scholar 

  • Beech E, Rivers M, Oldfield S, Smith PP (2017) GlobalTreeSearch: the first complete global database of tree species and country distributions. J Sustain Forest 36:454–489

    Article  Google Scholar 

  • Bell CD, Soltis DE, Soltis PS (2010) The age and diversification of the angiosperms re-revisited. Am J Bot 97:1296–1303

    Article  PubMed  Google Scholar 

  • Berisford CW (2011) Parasitoids of the southern pine beetle. In: Coulson RN, Klepzig KD (eds) Southern pine beetle II. Southern Research Station, GTR SRS-140, Asheville, NC, pp 129–139

    Google Scholar 

  • Berkov A (2018) Seasonality and stratification: neotropical saproxylic beetles respond to a heat and moisture continuum with conservatism and plasticity. In: Ulyshen MD (ed) Saproxylic insects: diversity, ecology and conservation. Springer, Heidelberg, pp 547–578

    Google Scholar 

  • Bertone MA, Wiegmann BM (2009) True flies (Diptera). In: Hedges SB, Kumar S (eds) The timetree of life. Oxford University Press, Oxford, pp 270–277

    Google Scholar 

  • Bignell DE (2016) The role of symbionts in the evolution of termites and their rise to ecological dominance in the tropics. In: Hurst CJ (ed) The mechanistic benefits of microbial symbionts. Springer, Heidelberg, pp 121–172

    Google Scholar 

  • Bignell DE (2018) Wood-feeding termites. In: Ulyshen MD (ed) Saproxylic insects: diversity, ecology and conservation. Springer, Heidelberg, pp 339–373

    Google Scholar 

  • Bignell DE, Eggleton P (2000) Termites in ecosystems. In: Abe T, Bignell D, Higashi M (eds) Termites: evolution, sociality, symbioses, ecology. Kluwer Academic, Dordrecht, pp 363–387

    Chapter  Google Scholar 

  • Bignell DE, Roisen Y, Lo N (eds) (2011) Biology of termites: a modern synthesis. Springer, Dordrecht

    Google Scholar 

  • Birkemoe T, Jacobsen RM, Sverdrup-Thygeson A, Biedermann PHW (2018) Insect-fungus interactions in dead wood systems. In: Ulyshen MD (ed) Saproxylic insects: diversity, ecology and conservation. Springer, Heidelberg, pp 377–427

    Google Scholar 

  • Blackman MW, Stage HH (1924) On the succession of insects living in the bark and wood of dying, dead and decaying hickory. Technical Publication No. 17 New York State College of Forestry, pp 3–269

    Google Scholar 

  • Bogusch P, Horák J (2018) Saproxylic bees and wasps. In: Ulyshen MD (ed) Saproxylic insects: diversity, ecology and conservation. Springer, Heidelberg, pp 217–235

    Google Scholar 

  • Bouget C, Brustel H, Nageleisen LM (2005) Nomenclature of wood-inhabiting groups in forest entomology: synthesis and semantic adjustments. C R Biol 328:936–948

    Article  PubMed  Google Scholar 

  • Bourguignon T, ŠobotnÍk JAN, Lepoint G, Martin J-M, Hardy OJ, Dejean A, Roisin Y (2011) Feeding ecology and phylogenetic structure of a complex neotropical termite assemblage, revealed by nitrogen stable isotope ratios. Ecol Entomol 36:261–269

    Article  Google Scholar 

  • Bourguignon T, Lo N, Cameron SL, Šobotník J, Hayashi Y, Shigenobu S, Watanabe D, Roisin Y, Miura T, Evans TA (2015) The evolutionary history of termites as inferred from 66 mitochondrial genomes. Mol Biol Evol 32:406–421

    Article  PubMed  CAS  Google Scholar 

  • Bourguignon T, Dahlsjö CAL, Jacquemin J, Gang L, Wijedasa LS, Evans TA (2017a) Ant and termite communities in isolated and continuous forest fragments in Singapore. Insect Soc 64:505–514

    Article  Google Scholar 

  • Bourguignon T, Lo N, Šobotník J, Ho SYW, Iqbal N, Coissac E, Lee M, Jendryka MM, Sillam-Dussès D, Křížková B, Roisin Y, Evans TA (2017b) Mitochondrial phylogenomics resolves the global spread of higher termites, ecosystem engineers of the tropics. Mol Biol Evol 34:589–597

    PubMed  Google Scholar 

  • Breznak JA (1982) Intestinal microbiota of termites and other xylophagous insects. Annu Rev Micriob 36:323–343

    Article  CAS  Google Scholar 

  • Breznak JA, Brill WJ, Mertins JW, Coppel HC (1973) Nitrogen fixation in termites. Nature 244:577–580

    Article  PubMed  CAS  Google Scholar 

  • Brin A, Bouget C (2018) Biotic interactions between saproxylic insect species. In: Ulyshen MD (ed) Saproxylic insects: diversity, ecology and conservation. Springer, Heidelberg, pp 471–514

    Google Scholar 

  • Brin A, Valladares L, Ladet S, Bouget C (2016) Effects of forest continuity on flying saproxylic beetle assemblages in small woodlots embedded in agricultural landscapes. Biodivers Conserv 25:587–602

    Article  Google Scholar 

  • Brullé GA (1832) Expédition scientifique de Morée. Section des sciences physiques zoologie. Deuxième section – des animaux articulés, vol 3, part 1. Levrault, Paris

    Google Scholar 

  • Brune A, Ohkuma M (2011) Role of the termite gut microbiota in symbiotic digestion. In: Bignell DE, Roisin Y, Lo N (eds) Biology of termites: a modern synthesis. Springer, New York, pp 439–475

    Google Scholar 

  • Bunnell FL, Houde I (2010) Down wood and biodiversity - Implications to forest practices. Environ Rev 18:397–421

    Article  Google Scholar 

  • Buse J (2012) "Ghosts of the past": flightless saproxylic weevils (Coleoptera: Curculionidae) are relict species in ancient woodlands. J Insect Conserv 16:93–102

    Article  Google Scholar 

  • Buxton RD (1981) Termites and the turnover of dead wood in an arid tropical environment. Oecologia 51:379–384

    Article  PubMed  CAS  Google Scholar 

  • Byrne KA, Lehnert SA, Johnson SE, Moore SS (1999) Isolation of a cDNA encoding a putative cellulase in the red claw crayfish Cherax quadricarinatus. Gene 239:317–324

    Article  PubMed  CAS  Google Scholar 

  • Carmona MR, Armesto JJ, Aravena JC, Pérez CA (2002) Coarse woody debris biomass in successional and primary temperate forests in Chiloé Island, Chile. Forest Ecol Manag 164:265–275

    Article  Google Scholar 

  • Cheesman AW, Cernusak LA, Zanne AE (In press) Relative roles of termites and saprotrophic microbes as drivers of wood decay: a wood block test. Austral Ecol. https://doi.org/10.1111/aec.12561

  • Cichan MA, Taylor TN (1982) Wood-borings in Premnoxylon: plant-animal interactions in the carboniferous. Palaeogeogr Palaeocl 39:123–127

    Article  Google Scholar 

  • Cichan MA, Taylor TN (1990) Evolution of cambium in geologic time – a reappraisal. In: Iqbal M (ed) The vascular cambium. Research Studies Press, Taunton, Somerset, England, pp 213–228

    Google Scholar 

  • Cleveland LR (1923) Symbiosis between termites and their intestinal protozoa. Proc Natl Acad Sci U S A 9:424–428

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cleveland LR, Hall SK, Sanders EP, Collier J (1934) The wood feeding roach Cryptocercus, its protozoa, and the symbiosis between protozoa and roach. Mem Am Acad Arts Sci 17:185–382

    Google Scholar 

  • Collins NM (1981) The role of termites in the decomposition of wood and leaf litter in the southern Guinea savanna of Nigeria. Oecologia 51:389–399

    Article  PubMed  CAS  Google Scholar 

  • Cornelius ML, Daigle DJ, Connick WJ Jr, Parker A, Wunch K (2002) Responses of Coptotermes formosanus and Reticulitermes flavipes (Isoptera: Rhinotermitidae) to three types of wood rot fungi cultured on different substrates. J Econ Entomol 95:121–128

    Article  PubMed  Google Scholar 

  • Cornwell WK, Cornelissen JHC, Allison SD, Bauhus J, Eggleton P, Preston CM, Scarff FA, Weedon JT, Wirth C, Zanne AE (2009) Plant traits and wood fates across the globe: rotted, burned, or consumed? Glob Chang Biol 15:2431–2449

    Article  Google Scholar 

  • Cummins KW (1974) Structure and function of stream ecosystems. Bioscience 24:631–641

    Article  Google Scholar 

  • Davies RG, Eggleton P, Jones DT, Gathorne-Hardy FJ, Hernández LM (2003) Evolution of termite functional diversity: analysis and synthesis of local ecological and regional influences on local species richness. J Biogeogr 30:847–877

    Article  Google Scholar 

  • Davis WT, Leng CW (1912) Insects on a recently felled tree. J New York Entomol S 20:119–121

    Google Scholar 

  • Dean RC (1978) Mechanisms of wood digestion in the shipworm Bankia gouldi Bartsch: Enzyme degradation of celluloses, hemicelluloses, and wood cell walls. Biol Bull 155:297–316

    Article  CAS  Google Scholar 

  • Dehal P, Satou Y, Campbell RK, Chapman J, Degnan B, De Tomaso A, Davidson B, Di Gregorio A, Gelpke M, Goodstein DM, Harafuji N, Hastings KEM, Ho I, Hotta K, Huang W, Kawashima T, Lemaire P, Martinez D, Meinertzhagen IA, Necula S, Nonaka M, Putnam N, Rash S, Saiga H, Satake M, Terry A, Yamada L, Wang H-G, Awazu S, Azumi K, Boore J, Branno M, Chin-bow S, DeSantis R, Doyle S, Francino P, Keys DN, Haga S, Hayashi H, Hino K, Imai KS, Inaba K, Kano S, Kobayashi K, Kobayashi M, Lee B-I, Makabe KW, Manohar C, Matassi G, Medina M, Mochizuki Y, Mount S, Morishita T, Miura S, Nakayama A, Nishizaka S, Nomoto H, Ohta F, Oishi K, Rigoutsos I, Sano M, Sasaki A, Sasakura Y, Shoguchi E, Shin-i T, Spagnuolo A, Stainier D, Suzuki MM, Tassy O, Takatori N, Tokuoka M, Yagi K, Yoshizaki F, Wada S, Zhang C, Hyatt PD, Larimer F, Detter C, Doggett N, Glavina T, Hawkins T, Richardson P, Lucas S, Kohara Y, Levine M, Satoh N, Rokhsar DS (2002) The draft genome of Ciona intestinalis: insights into chordate and vertebrate origins. Science 298:2157–2167

    Article  PubMed  CAS  Google Scholar 

  • Derksen W (1941) Die succession der pterygoten insekten im abgestorbenen buchenholz. Z Morph Ökol Tiere 37:683–734

    Article  Google Scholar 

  • Dillon RJ, Dillon VM (2004) The gut bacteria of insects: nonpathogenic interactions. Annu Rev Entomol 49:71–92

    Article  PubMed  CAS  Google Scholar 

  • Donovan SE, Eggleton P, Bignell DE (2001) Gut content analysis and a new feeding group classification of termites. Ecol Entomol 26:356–366

    Article  Google Scholar 

  • Duan JJ, Bauer LS, Abell KJ, Ulyshen MD, Van Driesche RG (2015) Population dynamics of an invasive forest insect and associated natural enemies in the aftermath of invasion: implications for biological control. J Appl Ecol 52:1246–1254

    Article  Google Scholar 

  • Eggleton P, Bignell DE, Hauser S, Dibog L, Norgrove L, Madong B (2002) Termite diversity across an anthropogenic disturbance gradient in the humid forest zone of West Africa. Agric Ecosyst Environ 90:189–202

    Article  Google Scholar 

  • Eidmann HH (1943) Successionen westafrikanischer Holzinsekten. Mitteilungen der Goring-Akademie der Deutschen Forstwissenschaft, Frankfort am Main 3:240–271

    Google Scholar 

  • Elton CS (1966) The pattern of animal communities. Methuen and Co., London

    Google Scholar 

  • Emerson AE, Krishna K (1975) The termite family Serritermitidae (Isoptera). Am Mus Novit 2570:1–31

    Google Scholar 

  • Epps MJ, Arnold AE (2010) Diversity, abundance and community network structure in sporocarp-associated beetle communities of the central Appalachian Mountains. Mycologia 102:785–802

    Article  PubMed  Google Scholar 

  • Evans TA, Forschler BT, Grace JK (2013) Biology of invasive termites: a worldwide review. Annu Rev Entomol 58:455–474

    Article  PubMed  CAS  Google Scholar 

  • Feldhaar H, Schauer B (2018) Dispersal of saproxylic insects. In: Ulyshen MD (ed) Saproxylic insects: diversity, ecology and conservation. Springer, Heidelberg, pp 515–546

    Google Scholar 

  • Feng Z, Wang J, Rößler R, Ślipiński A, Labandeira C (2017) Late Permian wood-borings reveal an intricate network of ecological relationships. Nat Commun 8:556

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ferro ML (2018) It’s the end of the wood as we know it: insects in veteris (highly-decomposed) wood. In: Ulyshen MD (ed) Saproxylic insects: diversity, ecology and conservation. Springer, Heidelberg, pp 729–795

    Google Scholar 

  • Fielding NJ, Evans HF (1997) Biological control of Dendroctonus micans (Scolytidae) in Great Britain. Biocontrol News Inform 18:51N–60N

    Google Scholar 

  • Filipiak M (2018) Nutrient dynamics in decomposing dead wood in the context of wood eater requirements: the ecological stoichiometry of saproxylophagous insects. In: Ulyshen MD (ed) Saproxylic insects: diversity, ecology and conservation. Springer, Heidelberg, pp 429–469

    Google Scholar 

  • Floren A, Schmidl J (2008) Introduction: canopy arthropod research in Europe. In: Floren A, Schmidl J (eds) Canopy arthropod research in Europe. Bioform Entomology, Nuremberg, pp 13–20

    Google Scholar 

  • Floudas D, Binder M, Riley R, Barry K, Blanchette RA, Henrissat B, Martínez AT, Otillar R, Spatafora JW, Yadav JS, Aerts A, Benoit I, Boyd A, Carlson A, Copeland A, Coutinho PM, de Vries RP, Ferreira P, Findley K, Foster B, Gaskell J, Glotzer D, Górecki P, Heitman J, Hesse C, Hori C, Igarashi K, Jurgens JA, Kallen N, Kersten P, Kohler A, Kües U, Kumar TKA, Kuo A, LaButti K, Larrondo LF, Lindquist E, Ling A, Lombard V, Lucas S, Lundell T, Martin R, McLaughlin DJ, Morgenstern I, Morin E, Murat C, Nagy LG, Nolan M, Ohm RA, Patyshakuliyeva A, Rokas A, Ruiz-Dueñas FJ, Sabat G, Salamov A, Samejima M, Schmutz J, Slot JC, St. John F, Stenlid J, Sun H, Sun S, Syed K, Tsang A, Wiebenga A, Young D, Pisabarro A, Eastwood DC, Martin F, Cullen D, Grigoriev IV, Hibbett DS (2012) The paleozoic origin of enzymatic lignin decomposition reconstructed from 31 fungal genomes. Science 336:1715–1719

    Article  PubMed  CAS  Google Scholar 

  • Franklin JF, Cromack K, Denison W, Mckee A, Maser C, Sedell J, Swanson F, Juday G (1981) Ecological characteristics of old-growth douglas-fir forests. USDA forerst service – general technical report PNW-118

    Google Scholar 

  • Freudenberg K, Nash AC (1968) Constitution and biosynthesis of lignin. Springer, New York

    Book  Google Scholar 

  • Frohlich MW, Chase MW (2007) After a dozen years of progress the origin of angiosperms is still a great mystery. Nature 450:1184–1189

    Article  PubMed  CAS  Google Scholar 

  • Garrick RC, Bouget C (2018) Molecular tools for assessing saproxylic insect diversity. In: Ulyshen MD (ed) Saproxylic insects: diversity, ecology and conservation. Springer, Heidelberg, pp 849–884

    Google Scholar 

  • Gerrienne P, Gensel PG, Strullu-Derrien C, Lardeux H, Steemans P, Prestianni C (2011) A simple type of wood in two Early Devonian plants. Science 333:837

    Article  PubMed  CAS  Google Scholar 

  • Gillespie MAK, Birkemoe T, Sverdrup-Thygeson A (2017) Interactions between body size, abundance, seasonality, and phenology in forest beetles. Ecol Evol 7:1091–1100

    Article  PubMed  PubMed Central  Google Scholar 

  • Gimmel ML, Ferro ML (2018) General overview of saproxylic Coleoptera. In: Ulyshen MD (ed) Saproxylic insects: diversity, ecology and conservation. Springer, Heidelberg, pp 51–128

    Google Scholar 

  • Girard C, Jouanin L (1999) Molecular cloning of cDNAs encoding a range of digestive enzymes from a phytophagous beetle, Phaedon cochleariae. Insect Biochem Molec 29:1129–1142

    Article  CAS  Google Scholar 

  • Godfray HCJ (1994) Parasitoids: behavioral and evolutionary ecology. Princeton University Press, Princeton, NJ

    Google Scholar 

  • Gossner MM, Damken C (2018) Diversity and ecology of saproxylic Hemiptera. In: Ulyshen MD (ed) Saproxylic insects: diversity, ecology and conservation. Springer, Heidelberg, pp 263–317

    Google Scholar 

  • Goßner M, Engel K, Jessel B (2008) Plant and arthropod communities in young oak stands: are they determined by site history? Biodivers Conserv 17:3165–3180

    Article  Google Scholar 

  • Gossner MM, Wende B, Levick S, Schall P, Floren A, Linsenmair KE, Steffan-Dewenter I, Schulze E-D, Weisser WW (2016) Deadwood enrichment in European forests – Which tree species should be used to promote saproxylic beetle diversity? Biol Conserv 201:92–102

    Article  Google Scholar 

  • Graf-Peters LV, Lopes-Andrade C, da Silveira RMB, Moura LA, Reck MA, FNd S (2011) Host fungi and feeding habits of Ciidae (Coleoptera) in a subtropical rainforest in Southern Brazil, with an overview of host fungi of neotropical Ciids. Fla Entomol 94:553–566

    Article  Google Scholar 

  • Graham SA (1925) The felled tree trunk as an ecological unit. Ecology 6:397–411

    Article  Google Scholar 

  • Grassé PP (1982) Termitologia, Tomme I: Anatomie, physiologie, reproduction des termites. Masson, Paris

    Google Scholar 

  • Grassé PP (1984) Termitologia, Tomme II. Foundation des sociétés-construction, Masson, Paris

    Google Scholar 

  • Grassé PP (1986) Termitologia, Tome III. Comportement, Socialité, Écologie, Évolution, Systematique, Masson, Paris

    Google Scholar 

  • Griffiths HM, Ashton LA, Walker AE, Hasan F, Evans TA, Eggleton P, Parr CL (2018) Ants are the major agents of resource removal from tropical rainforests. J Anim Ecol 87:293–300

    Article  PubMed  Google Scholar 

  • Grimaldi D, Engel M (2005) Evolution of the insects. Cambridge University Press, New York

    Google Scholar 

  • Grove SJ (2002a) The influence of forest management history on the integrity of the saproxylic beetle fauna in an Australian lowland tropical rainforest. Biol Conserv 104:149–171

    Article  Google Scholar 

  • Grove SJ (2002b) Saproxylic insect ecology and the sustainable management of forests. Annu Rev Ecol Syst 33:1–23

    Article  Google Scholar 

  • Grove SJ (2002c) Tree basal area and dead wood as surrogate indicators of saproxylic insect faunal integrity: a case study from the Australian lowland tropics. Ecol Indic 1:171–188

    Article  Google Scholar 

  • Grove SJ (2007) Mudguts. Tasmanian Nat 129:2–7

    Google Scholar 

  • Grove SJ, Forster L (2011) A decade of change in the saproxylic beetle fauna of eucalypt logs in the Warra long-term log-decay experiment, Tasmania. 2. Log-size effects, succession, and the functional significance of rare species. Biodivers Conserv 20:2167–2188

    Article  Google Scholar 

  • Hagen HA (1855) Monographie der Termiten. Linnaea Entom 10(1–144):270–325

    Google Scholar 

  • Hagen HA (1858) Monographie der Termiten. Linnaea Entom 12:4–342

    Google Scholar 

  • Hagen HA (1860) Monographie der Termiten. Linnaea Entom 14:73–99

    Google Scholar 

  • Hanski I, Hammond P (1995) Biodiversity in boreal forests. Trends Ecol Evol 10:5–6

    Article  Google Scholar 

  • Harmon ME, Franklin JF, Swanson FJ, Sollins P, Gregory SV, Lattin JD, Anderson NH, Cline SP, Aumen NG, Sedell JR, Lienkaemper GW, Cromack JK, Cummins KW (1986) Ecology of coarse woody debris in temperate ecosystems. Adv Ecol Res 15:133–302

    Article  Google Scholar 

  • Haviland GD (1898) Observations on termites; with descriptions of new species. Zool J Linnean Soc 26:358–442

    Article  Google Scholar 

  • Hendee EC (1935) The role of fungi in the diet of the common damp-wood termite, Zootermopsis angusticollis. Hilgardia 9:499–525

    Article  CAS  Google Scholar 

  • Henin JM, Paiva MR (2004) Interactions between Orthotomicus erosus (Woll.) (Col., Scolytidae) and the Argentine ant Linepithema humile (Mayr) (Hym., Formicidae). J Pest Sci 77:113–117

    Article  Google Scholar 

  • Hickin NE (1963) The insect factor in wood decay: an account of wood-boring insects with particular reference to timber indoors. Hutchinson & Co., London

    Google Scholar 

  • Hickin NE (1971) Termites – a world problem. Hutchinson & Co., London

    Google Scholar 

  • Hilszczański J (2018) Ecology, diversity and conservation of saproxylic hymenopteran parasitoids. In: Ulyshen MD (ed) Saproxylic insects: diversity, ecology and conservation. Springer, Heidelberg, pp 193–216

    Google Scholar 

  • Hjältén J, Dynesius M, Hekkala A-M, Karlsson-Tiselius A, Löfroth T, Pettersson RM (2018) Saproxylic insects and fire. In: Ulyshen MD (ed) Saproxylic insects: diversity, ecology and conservation. Springer, Heidelberg, pp 669–691

    Google Scholar 

  • Holmgren N (1909) Termitenstudien. 1. Anatomische Untersuchungen. Kungliga Svenska Vetenskaps-Akademiens Handlingar 44:1–215

    Google Scholar 

  • Holmgren N (1911) Termitenstudien. 2. Systematik der Termiten. Die Familien Mastotermitidae, Protermitidae und Mesotermitidae. Kungliga Svenska Vetenskaps-Akademiens Handlingar 46:1–86

    Google Scholar 

  • Holmgren N (1912) Termitenstudien. 3. Systematik der Termiten. Die Familie Metatermitidae. Kungliga Svenska Vetenskaps-Akademiens Handlingar 48:1–166

    Google Scholar 

  • Holmquist AM (1926) Studies in arthropod hibernation I. Ecological survey of hibernating species from forest environments of the Chicago region. Ann Entomol Soc Am 19:395–428

    Article  Google Scholar 

  • Holmquist AM (1928) Notes on the biology of the muscid fly, Pyrellia serena Meigen, with special reference to its hibernation. Ann Entomol Soc Am 21:660–667

    Article  Google Scholar 

  • Holmquist AM (1931) Studies in arthropod hibernation III. Temperatures in forest hibernacula. Ecology 12:387–400

    Article  Google Scholar 

  • Hopping GR (1947) Notes on the seasonal development of Medetera aldrichii Wheeler (Diptera. Dolichopodidae) as a predator of the Douglas fir bark-beetle, Dendroctonus pseudotsugae Hopkins (1). Can Entomol 79:150–153

    Article  Google Scholar 

  • Horák J (2018) The role of urban environments for saproxylic insects. In: Ulyshen MD (ed) Saproxylic insects: diversity, ecology and conservation. Springer, Heidelberg, pp 835–846

    Google Scholar 

  • Hövemeyer K, Schauermann J (2003) Succession of Diptera on dead beech wood: a 10-year study. Pedobiologia 47:61–75

    Article  Google Scholar 

  • Howden HF, Vogt GB (1951) Insect communities of standing dead pine (Pinus virginiana Mill.) Ann Entomol Soc Am 44:581–595

    Article  Google Scholar 

  • Huang T-I (2018) Diversity and ecology of stag beetles (Lucanidae). In: Ulyshen MD (ed) Saproxylic insects: diversity, ecology and conservation. Springer, Heidelberg, pp 149–165

    Google Scholar 

  • Hulcr J, Atkinson TH, Cognato AI, Jordal BH, McKenna DD (2015) Morphology, taxonomy and phylogenetics of bark beetles. In: Vega FE, Hofstetter RW (eds) Bark beetles: biology and ecology of native and invasive species. Academic, London, pp 41–84

    Chapter  Google Scholar 

  • Hyodo F, Tayasu I, Inoue T, Azuma J-I, Kudo T, Abe T (2003) Differential role of symbiotic fungi in lignin degradation and food provision for fungus-growing termites (Macrotermitinae: Isoptera). Funct Ecol 17:186–193

    Article  Google Scholar 

  • Idol TW, Figler RA, Pope PE, Ponder F Jr (2001) Characterization of coarse woody debris across a 100 year chronosequence of upland oak-hickory forests. Forest Ecol Manag 149:153–161

    Article  Google Scholar 

  • Imms AD (1919) On the structure and biology of Archotermopsis, together with descriptions of new species of intestinal Protozoa, and general observations on the Isoptera. Philos T Roy Soc B 209:75–180

    Article  Google Scholar 

  • Inward D, Beccaloni G, Eggleton P (2007) Death of an order: a comprehensive molecular phylogenetic study confirms that termites are eusocial cockroaches. Biol Lett 3:331–335

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Irmler U, Arp H, Nötzold R (2010) Species richness of saproxylic beetles in woodlands is affected by dispersion ability of species, age and stand size. J Insect Conserv 14:227–235

    Article  Google Scholar 

  • Jabin M, Mohr D, Kappes H, Topp W (2004) Influence of deadwood on density of soil macro-arthropods in a managed oak-beech forest. Forest Ecol Manag 194:61–69

    Article  Google Scholar 

  • Jackson HB, Baum KA, Cronin JT (2012) From logs to landscapes: determining the scale of ecological processes affecting the incidence of a saproxylic beetle. Ecol Entomol 37:233–243

    Article  Google Scholar 

  • Jaworski T (2018) Diversity of saproxylic Lepidoptera. In: Ulyshen MD (ed) Saproxylic insects: diversity, ecology and conservation. Springer, Heidelberg, pp 319–338

    Google Scholar 

  • Jeffries TW (1987) Physical, chemical and biochemical considerations in the biological degradation of wood. In: Kennedy JF, Phillips GO, William PA (eds) Wood and cellulosics: industrial utilisation, biotechnology, structure and properties. Ellis Horwood Ltd., Chichester, England, pp 213–230

    Google Scholar 

  • Jones HL, Worrall JJ (1995) Fungal biomass in decayed wood. Mycologia 87:459–466

    Article  Google Scholar 

  • Jones DT, Susilo FX, Bignell DE, Hardiwinoto S, Gillison AN, Eggleton P (2003) Termite assemblage collapse along a land-use intensification gradient in lowland central Sumatra, Indonesia. J Appl Ecol 40:380–391

    Article  Google Scholar 

  • Jonsell M, Nordlander G (2004) Host selection patterns in insects breeding in bracket fungi. Ecol Entomol 29:697–705

    Article  Google Scholar 

  • Jonsell M, Nordlander G, Ehnström B (2001) Substrate associations of insects breeding in fruiting bodies of wood-decaying fungi. Ecol Bull 49:173–194

    Google Scholar 

  • Käärik AA (1974) Decomposition of wood. In: Dickinson CH, Pugh GJF (eds) Biology of plant litter decomposition, vol 1. Academic, London, pp 129–174

    Chapter  Google Scholar 

  • Kellogg DW, Taylor EL (2004) Evidence of oribatid mite detritivory in Antarctica during the late Paleozoic and Mesozoic. J Paleontol 78:1146–1153

    Article  Google Scholar 

  • Kim YS, Singh AP (2000) Micromorphological characteristics of wood biodegradation in wet environments: a review. IAWA J 21:135–155

    Article  Google Scholar 

  • King JR, Warren RJ, Bradford JB (2013) Social insects dominate eastern US temperate hardwood forest macroinvertebrate communities in warmer regions. PLoS One 8:e75843

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • King JR, Warren RJ II, Maynard DS, Bradford MA (2018) Ants: ecology and impacts in dead wood. In: Ulyshen MD (ed) Saproxylic insects: diversity, ecology and conservation. Springer, Heidelberg, pp 237–262

    Google Scholar 

  • Kofoid CA (1934) Termites and termite control. University of California Press, Berkeley, CA

    Google Scholar 

  • Kofoid CA, Light SF, Horner AC, Randall M, Herms WB, Bowe EE (1934) Termites and termite control. University of California Press, Berkeley

    Google Scholar 

  • Krishna K, Weesner FM (eds) (1969) Biology of termites, vol I. Academic, New York

    Google Scholar 

  • Krishna K, Weesner FM (eds) (1970) Biology of termites, vol II. Academic, New York

    Google Scholar 

  • Krishna K, Grimaldi D, Engel MS (2013) Treatise on the Isoptera of the world. B Am Mus Nat Hist 377:1–2704

    Article  Google Scholar 

  • Krivosheina MG (2006) Taxonomic composition of dendrobiontic Diptera and the main trends of their adaptive radiation. Entomol Rev 86:557–567

    Article  Google Scholar 

  • Krogerus R (1927) Beobachtungen uber die succession einiger insektenbiocoenosen in fichtenstumpfen. Notulae Entomologicae 7:121–126

    Google Scholar 

  • Kukor JJ, Martin MM (1986) Cellulose digestion in Monochamus marmorator Kby. (Coleoptera: Cerambycidae): role of acquired fungal enzymes. J Chem Ecol 12:1057–1070

    Article  PubMed  CAS  Google Scholar 

  • Labandeira CC, Phillips TL, Norton RA (1997) Oribatid mites and the decomposition of plant tissues in Paleozoic coal-swamp forests. Palaios 12:319–353

    Article  Google Scholar 

  • Labandeira CC, LePage BA, Johnson AH (2001) A Dendroctonus bark engraving (Coleoptera: Scolytidae) from a middle Eocene Larix (Coniferales: Pinaceae): early or delayed colonization? Am J Bot 88:2026–2039

    Article  PubMed  CAS  Google Scholar 

  • Lachat T, Müller J (2018) Importance of primary forests for the conservation of saproxylic insects. In: Ulyshen MD (ed) Saproxylic insects: diversity, ecology and conservation. Springer, Heidelberg, pp 581–605

    Google Scholar 

  • Lachat T, Wermelinger B, Gossner MM, Bussler H, Isacsson G, Müller J (2012) Saproxylic beetles as indicator species for dead-wood amount and temperature in European beech forests. Ecol Indic 23:323–331

    Article  Google Scholar 

  • Lachat T, Chumak M, Chumak V, Jakoby O, Müller J, Tanadini M, Wermelinger B (2016) Influence of canopy gaps on saproxylic beetles in primeval beech forests: a case study from the Uholka-Shyrokyi Luh forest, Ukraine. Insect Conserv Diver 9:559–573

    Article  Google Scholar 

  • Latreille PA (1802) Histoire naturelle, générale et particulière des crustacés et des insectes, vol 3. Dufart, Paris

    Google Scholar 

  • Lavelle P, Bignell D, Lepage M, Wolters V, Roger P, Ineson P, Heal OW, Dhillion S (1997) Soil function in a changing world: the role of invertebrate ecosystem engineers. Eur J Soil Biol 33:159–193

    CAS  Google Scholar 

  • Lawson SA, Furuta K, Katagiri K (1996) The effect of host tree on the natural enemy complex of Ips typographus japonicus Niijima (Col., Scolytidae) in Hokkaido, Japan. J Appl Entomol 120:77–86

    Article  Google Scholar 

  • Lee S-I, Spence JR, Langor DW (2014) Succession of saproxylic beetles associated with decomposition of boreal white spruce logs. Agric For Entomol 16:391–405

    Article  Google Scholar 

  • Lee S-I, Spence JR, Langor DW (2018) Conservation of saproxylic insect diversity under variable retention harvesting In: Ulyshen MD (ed) Saproxylic insects: diversity, ecology and conservation. Springer, Heidelberg, pp 639–667

    Google Scholar 

  • Leidy J (1881) The parasites of the termites. J Acad Nat Sci Philadelphia III 8:425–447

    Google Scholar 

  • Leschine SB (1995) Cellulose degradation in anaerobic environments. Annu Rev Microbiol 49:399–426

    Article  PubMed  CAS  Google Scholar 

  • Lo N, Tokuda G, Watanabe H, Rose H, Slaytor M, Maekawa K, Bandi C, Noda H (2000) Evidence from multiple gene sequences indicates that termites evolved from wood-feeding cockroaches. Curr Biol 10:801–804

    Article  PubMed  CAS  Google Scholar 

  • Lo N, Watanabe H, Sugimura M (2003) Evidence for the presence of a cellulase gene in the last common ancestor of bilaterian animals. P Roy Soc Lond B Bio 270(Suppl 1):S69–S72

    Article  CAS  Google Scholar 

  • Lo N, Tokuda G, Watanabe H (2011) Evolution and function of endogenous termite cellulases. In: Bignell DE, Roisin Y, Lo N (eds) Biology of termites: a modern synthesis. Springer, New York, pp 51–67

    Google Scholar 

  • Martikainen P, Siitonen J, Puntilla P, Kaila L, Rauh J (2000) Species richness of Coleoptera in mature managed and old-growth boreal forests in southern Finland. Biol Conserv 94:199–209

    Article  Google Scholar 

  • Maser C, Trappe JM (eds) (1984) The seen and unseen world of the fallen tree. USDA forest service – general technical reports PNW-164

    Google Scholar 

  • Maser C, Anderson RG, Cromack K, Williams JT, Martin RE (1979) Dead and downed material. In: Thomas JW (ed) Wildlife habitats in managed forests: the blue mountains of Oregon and Washington. USDA forest service, agriculture handbook no. 553, pp 78–95

    Google Scholar 

  • Maser C, Tarrant RF, Trappe JM, Franklin JF (eds) (1988) From the forest to the sea: a story of fallen trees. USDA forest service – general technical reports PNW-GTR-229

    Google Scholar 

  • McCarthy BC, Bailey RR (1994) Distribution and abundance of coarse woody debris in a managed forest landscape of the central Appalachians. Can J For Res 24:1317–1329

    Article  Google Scholar 

  • McComb WC, Lindenmayer D (1999) Dying, dead, and down trees. In: Hunter ML (ed) Maintaining biodiversity in forest ecosystems. Cambridge University Press, Cambridge, pp 335–372

    Chapter  Google Scholar 

  • Meerts P (2002) Mineral nutrient concentrations in sapwood and heartwood: a literature review. Ann For Sci 59:713–722

    Article  Google Scholar 

  • Meyer-Berthaud B, Scheckler SE, Wendt J (1999) Archaeopteris is the earliest known modern tree. Nature 398:700–701

    Article  CAS  Google Scholar 

  • Michaels K, Bornemissza G (1999) Effects of clearfell harvesting on lucanid beetles (Coleoptera: Lucanidae) in wet and dry sclerophyll forests in Tasmania. J Insect Conserv 3:85–95

    Article  Google Scholar 

  • Micó E (2018) Saproxylic insects in tree hollows. In: Ulyshen MD (ed) Saproxylic insects: diversity, ecology and conservation. Springer, Heidelberg, pp 693–727

    Google Scholar 

  • Mishima T, Wada N, Iwata R, Anzai H, Hosoya T, Araya K (2016) Super-protective child-rearing by Japanese bess beetles, Cylindrocaulus patalis: Adults provide their larvae with chewed and predigested wood. Insects 7:18

    Article  PubMed Central  Google Scholar 

  • Misof B, Liu S, Meusemann K, Peters RS, Donath A, Mayer C, Frandsen PB, Ware J, Flouri T, Beutel RG, Niehuis O, Petersen M, Izquierdo-Carrasco F, Wappler T, Rust J, Aberer AJ, Aspöck U, Aspöck H, Bartel D, Blanke A, Berger S, Böhm A, Buckley TR, Calcott B, Chen J, Friedrich F, Fukui M, Fujita M, Greve C, Grobe P, Gu S, Huang Y, Jermiin LS, Kawahara AY, Krogmann L, Kubiak M, Lanfear R, Letsch H, Li Y, Li Z, Li J, Lu H, Machida R, Mashimo Y, Kapli P, McKenna DD, Meng G, Nakagaki Y, Navarrete-Heredia JL, Ott M, Ou Y, Pass G, Podsiadlowski L, Pohl H, von Reumont BM, Schütte K, Sekiya K, Shimizu S, Slipinski A, Stamatakis A, Song W, Su X, Szucsich NU, Tan M, Tan X, Tang M, Tang J, Timelthaler G, Tomizuka S, Trautwein M, Tong X, Uchifune T, Walzl MG, Wiegmann BM, Wilbrandt J, Wipfler B, Wong TKF, Wu Q, Wu G, Xie Y, Yang S, Yang Q, Yeates DK, Yoshizawa K, Zhang Q, Zhang R, Zhang W, Zhang Y, Zhao J, Zhou C, Zhou L, Ziesmann T, Zou S, Li Y, Xu X, Zhang Y, Yang H, Wang J, Wang J, Kjer KM, Zhou X (2014) Phylogenomics resolves the timing and pattern of insect evolution. Science 346:763–767

    Article  PubMed  CAS  Google Scholar 

  • Morón MA (1985) Observaciones sobre la biologia de dos especies de Rutelinos saproxilofagos en la Sierra de Hidalgo, Mexico (Coleoptera: Melolonthidae: Rutelinae). Folia Entomol Mex 64:41–53

    Google Scholar 

  • Morón MA, Deloya C (2001) Observaciones sobre el ciclo de vida de Megasoma elephas elephas (Fabricius) (Coleoptera: Melolonthidae; Dynastinae). Folia Entomol Mex 40:233–244

    Google Scholar 

  • Muñoz-López NZ, Andrés-Hernández AR, Carrillo-Ruiz H, Rivas-Arancibia SP (2016) Coleoptera associated with decaying wood in a tropical deciduous forest. Neotrop Entomol 45:341–350

    Article  PubMed  Google Scholar 

  • Naugolnykh SV, Ponomarenko AG (2010) Possible traces of feeding by beetles in Coniferophyte wood from the Kazanian of the Kama River Basin. Paleontol J 44:468–474

    Article  Google Scholar 

  • Nilsson SG, Baranowski R (1997) Habitat predictability and the occurrence of wood beetles in old-growth beech forests. Ecography 20:491–498

    Article  Google Scholar 

  • Nobre T, Rouland-Lefèvre C, Aanen DK (2011) Comparative biology of fungus cultivation in termites and ants. In: Bignell D, Roisin Y, Lo N (eds) Biology of termites: a modern synthesis. Springer, New York, pp 193–210

    Google Scholar 

  • Noll L, Leonhardt S, Arnstadt T, Hoppe B, Poll C, Matzner E, Hofrichter M, Kellner H (2016) Fungal biomass and extracellular enzyme activities in coarse woody debris of 13 tree species in the early phase of decomposition. Forest Ecol Manag 378:181–192

    Article  Google Scholar 

  • Noyes H (1937) Man and the termite. Windmill Press, Kingswood, Surrey

    Google Scholar 

  • Ohkuma M, Iida T, Ohtoko K, Yuzawa H, Noda S, Viscogliosi E, Kudo T (2005) Molecular phylogeny of parabasalids inferred from small subunit rRNA sequences, with emphasis on the Hypermastigea. Mol Phylogenet Evol 35:646–655

    Article  PubMed  CAS  Google Scholar 

  • Økland B, Bakke A, Hågvar S, Kvamme T (1996) What factors influence the diversity of saproxylic beetles? A multiscaled study from a spruce forest in southern Norway. Biodivers Conserv 5:75–100

    Article  Google Scholar 

  • Panshin AJ, de Zeeuw C (1970) Textbook of wood technology, 3rd edn. McGraw-Hill, New York

    Google Scholar 

  • Perlin J (1989) A forest journey: the role of wood in the development of civilization. W.W. Norton and Company, New York

    Google Scholar 

  • Phillips OL, Hall P, Gentry AH, Sawyer SA, Vasquez R (1994) Dynamics and species richness of tropical rain forests. Proc Natl Acad Sci U S A 91:2805–2809

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Poulsen M, Hu H, Li C, Chen Z, Xu L, Otani S, Nygaard S, Nobre T, Klaubauf S, Schindler PM, Hauser F, Pan H, Yang Z, Sonnenberg ASM, de Beer ZW, Zhang Y, Wingfield MJ, Grimmelikhuijzen CJP, de Vries RP, Korb J, Aanen DK, Wang J, Boomsma JJ, Zhang G (2014) Complementary symbiont contributions to plant decomposition in a fungus-farming termite. Proc Natl Acad Sci U S A 111:14500–14505

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pyle C, Brown MM (1999) Heterogeneity of wood decay classes within hardwood logs. Forest Ecol Manag 114:253–259

    Article  Google Scholar 

  • Ranius T, Hedin J (2001) The dispersal rate of a beetle, Osmoderma eremita, living in tree hollows. Oecologia 126:363–370

    Article  PubMed  Google Scholar 

  • Rayner ADM, Boddy L (1988) Fungal decomposition of wood: Its biology and ecology. Wiley, New York

    Google Scholar 

  • Richards OW (1926) Studies on the ecology of english heaths III. Animal communities of the felling and burn successions at Oxshott heath, Surrey. J Ecol 14:244–281

    Article  Google Scholar 

  • Romanova N (1985) Once there was a tree (originally published in Russian, in 1983, as “Chei eto pen?”). Dial Books, New York, NY

    Google Scholar 

  • Rust MK, Su N-Y (2012) Managing social insects of urban importance. Annu Rev Entomol 57:355–375

    Article  PubMed  CAS  Google Scholar 

  • Samuelsson J, Gustafsson L, Ingelög T (1994) Dying and dead trees—a review of their importance for biodiversity. Swedish Threatened Species Unit, Uppsala

    Google Scholar 

  • Savely HE (1939) Ecological relations of certain animals in dead pine and oak logs. Ecol Monogr 9:321–385

    Article  Google Scholar 

  • Scheckler SE (2001) Afforestation – the first forests. In: DEG B, Crowther P (eds) Palaeobiology II. Blackwell Science, Oxford, pp 67–71

    Chapter  Google Scholar 

  • Schiegg K (2000a) Are there saproxylic beetle species characteristic of high dead wood connectivity? Ecography 23:579–587

    Article  Google Scholar 

  • Schiegg K (2000b) Effects of dead wood volume and connectivity on saproxylic insect species diversity. Ecoscience 7:290–298

    Article  Google Scholar 

  • Scholtz CH, Chown SL (1995) The evolution of habitat use and diet in the Scarabaeoidea: a phylogenetic approach. In: Pakaluk J, Slipinski SA (eds) Biology, phylogeny, and classification of coleoptera: papers celebrating the 80th birthday of Roy A. Crowson, vol 1. Muzeum i Instytut Zoologii PAN, Warszawa, pp 355–374

    Google Scholar 

  • Schroeder LM, Lindelöw Å (2002) Attacks on living spruce trees by the bark beetle Ips typographus (Col. Scolytidae) following a storm-felling: a comparison between stands with and without removal of wind-felled trees. Agric For Entomol 4:47–56

    Article  Google Scholar 

  • Schuster JC (1978) Biogeographical and ecological limits of New World Passalidae. Coleopt Bull 32:21–28

    Google Scholar 

  • Schuurman G (2005) Decomposition rates and termite assemblage composition in semiarid Africa. Ecology 86:1236–1249

    Article  Google Scholar 

  • Seibold S, Thorn S (2018) The importance of dead-wood amount for saproxylic insects and how it interacts with dead-wood diversity and other habitat factors. In: Ulyshen MD (ed) Saproxylic insects: diversity, ecology and conservation. Springer, Heidelberg, pp 607–637

    Google Scholar 

  • Seibold S, Bässler C, Baldrian P, Reinhard L, Thorn S, Ulyshen MD, Weiß I, Müller J (2016a) Dead-wood addition promotes non-saproxylic epigeal arthropods but effects are mediated by canopy openness. Biol Conserv 204:181–188

    Article  Google Scholar 

  • Seibold S, Bässler C, Brandl R, Büche B, Szallies A, Thorn S, Ulyshen MD, Müller J (2016b) Microclimate and habitat heterogeneity as the major drivers of beetle diversity in dead wood. J Appl Ecol 53:934–943

    Article  Google Scholar 

  • Shelford VE (1913) Animal communities in temperate America. University of Chicago Press, Chicago

    Book  Google Scholar 

  • Shellman-Reeve JS (1997) The spectrum of eusociality in termites. In: Choe JC, Crespi BJ (eds) The evolution of social behavior in insects and arachnids. Cambridge University Press, Cambridge, pp 52–93

    Chapter  Google Scholar 

  • Shelton TG, Vogt JT, Appel AG, Oi FM (1999) Observations of Reticulitermes spp. in Solenopsis invicta mounds (Isoptera: Rhinotermitidae, Hymenoptera: Formicidae). Sociobiology 33:265–275

    Google Scholar 

  • Shigo AL (1984) Compartmentalization: a conceptual framework for understanding how trees grow and defend themselves. Annu Rev Phytopathol 22:189–214

    Article  Google Scholar 

  • Sigoillot J-C, Berrin J-G, Bey M, Lesage-Meessen L, Levasseur A, Lomascolo A, Record E, Uzan-Boukhris E (2012) Fungal strategies for lignin degradation. Adv Bot Res 61:263–308

    Article  CAS  Google Scholar 

  • Siitonen J (2001) Forest management, coarse woody debris and saproxylic organisms: Fennoscandian boreal forests as an example. Ecol Bull 49:11–41

    Google Scholar 

  • Siitonen J, Saaristo L (2000) Habitat requirements and conservation of Pytho kolwensis, a beetle species of old-growth boreal forest. Biol Conserv 94:211–220

    Article  Google Scholar 

  • Siitonen J, Martikainen P, Punttila P, Rauh J (2000) Coarse woody debris and stand characteristics in mature managed and old-growth boreal mesic forests in southern Finland. Forest Ecol Manag 128:211–225

    Article  Google Scholar 

  • Similä M, Kouki J, Martikainen P (2003) Saproxylic beetles in managed and seminatural Scots pine forests: quality of dead wood matters. Forest Ecol Manag 174:365–381

    Article  Google Scholar 

  • Singh D, Chen S (2008) The white-rot fungus Phanerochaete chrysosporium: conditions for the production of lignin-degrading enzymes. Appl Microbiol Biotechnol 81:399–417

    Article  PubMed  CAS  Google Scholar 

  • Sjöstedt Y (1926) Revision der Termiten Afrikas. 3. Monographie. Kungliga Svenska Vetenskaps-Akademiens Handlingar 3:1–419

    Google Scholar 

  • Sjostrom E (1993) Wood chemistry. Fundamentals and applications, 2nd edn. Academic, San Diego

    Google Scholar 

  • Smant G, Stokkermans JPWG, Yan Y, De Boer JM, Baum TJ, Wang X, Hussey RS, Gommers FJ, Henrissat B, Davis EL, Helder J, Schots A, Bakker J (1998) Endogenous cellulases in animals: isolation of β-1,4-endoglucanase genes from two species of plant-parasitic cyst nematodes. Proc Natl Acad Sci U S A 95:4906–4911

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Smeathman H (1781) Some Account of the Termites, which are found in Africa and other hot climates. In a Letter from Mr. Henry Smeathman, of Clement’s Inn, to Sir Joseph Banks, Bart. P. R. S. Philos T Roy Soc B 71:139–192

    Article  Google Scholar 

  • Smythe RV, Carter FL, Baxter CC (1971) Influence of wood decay on feeding and survival of the eastern subterranean termite, Reticulitermes flavipes (Isoptera: Rhinotermitidae). Ann Entomol Soc Am 64:59–62

    Article  Google Scholar 

  • Snyder TE (1948) Our enemy the termite. Comstock Publishing, Ithaca, NY

    Google Scholar 

  • Snyder TE (1956) Annotated, subject-heading bibliography of termites, 1350 BC to AD 1954. Smithsonian Institution

    Google Scholar 

  • Spaulding P, Hansbrough JR (1944) Decay of logging slash in the northeast. USDA Technical Bulletin No. 876, Washington, DC

    Google Scholar 

  • Speight MCD (1989) Saproxylic invertebrates and their conservation. Council of Europe, Strasbourg

    Google Scholar 

  • Spicer R, Groover A (2010) Evolution and development of vascular cambia and secondary growth. New Phytol 186:577–592

    Article  PubMed  CAS  Google Scholar 

  • Spies TA, Franklin JF, Thomas TB (1988) Coarse woody debris in douglas-fir forests of western Oregon and Washington. Ecology 69:1689–1702

    Article  Google Scholar 

  • Stein WE, Mannolini F, Hernick LV, Landing E, Berry CM (2007) Giant cladoxylopsid trees resolve the enigma of the Earth’s earliest forest stumps at Gilboa. Nature 446:904–907

    Article  PubMed  CAS  Google Scholar 

  • Stenbacka F, Hjältén J, Hilszczanski J, Dynesius M (2010a) Saproxylic and non-saproxylic beetle assemblages in boreal spruce forests of different age and forestry intensity. Ecol Appl 20:2310–2321

    Article  PubMed  Google Scholar 

  • Stenbacka F, Hjältén J, Hilszczański J, Dynesius M (2010b) Saproxylic and non-saproxylic beetle assemblages in boreal spruce forests of different age and forestry intensity. Ecol Appl 20:2310–2321

    Article  PubMed  Google Scholar 

  • Stokland JN, Siitonen J, Jonsson BG (2012) Biodiversity in dead wood. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Stubbs AE (1972) Wildlife conservation and dead wood. A supplement to the Journal of Devon Trust for Nature Conservation

    Google Scholar 

  • Suzuki KI, Ojima T, Nishita K (2003) Purification and cDNA cloning of a cellulase from abalone Haliotis discus hannai. Eur J Biochem 270:771–778

    Article  PubMed  CAS  Google Scholar 

  • Sverdrup-Thygeson A, Gustafsson L, Kouki J (2014) Spatial and temporal scales relevant for conservation of dead-wood associated species: current status and perspectives. Biodivers Conserv 23:513–535

    Article  Google Scholar 

  • Tanahashi M, Matsushita N, Togashi K (2009) Are stag beetles fungivorous? J Insect Physiol 55:983–988

    Article  PubMed  CAS  Google Scholar 

  • Tayasu I, Abe T, Eggleton P, Bignell DE (1997) Nitrogen and carbon isotope ratios in termites: an indicator of trophic habit along the gradient from wood-feeding to soil-feeding. Ecol Entomol 22:343–351

    Article  Google Scholar 

  • Teskey HJ (1976) Diptera larvae associated with trees in North America. Mem Ent Soc Can 108:1–53

    Article  Google Scholar 

  • Thomas P (2000) Trees: their natural history. Cambridge University press, Cambridge

    Book  Google Scholar 

  • Thomas JW, Anderson RG, Maser C, Bull EL (1979) Snags. In: Thomas JW (ed) Wildlife habitats in managed forests: the blue mountains of Oregon and Washington. USDA forest service, agriculture handbook no. 553, pp 60–77

    Google Scholar 

  • Thompson BM, Bodart J, McEwen C, Gruner DS (2014) Adaptations for symbiont-mediated external digestion in Sirex noctilio (Hymenoptera: Siricidae). Ann Entomol Soc Am 107:453–460

    Article  Google Scholar 

  • Thorne BL, Breisch NL, Muscedere ML (2003) Evolution of eusociality and the soldier caste in termites: influence of intraspecific competition and accelerated inheritance. Proc Natl Acad Sci U S A 100:12808–12813

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tomme P, Warren RAJ, Gilkes NR (1995) Cellulose hydrolysis by bacteria and fungi. In: Poole RK (ed) Advances in microbial physiology, vol 37. Academic, London, pp 1–81

    Google Scholar 

  • Torres JA (1994) Wood decomposition of Cyrilla racemiflora in a tropical montane forest. Biotropica 26:124–140

    Article  Google Scholar 

  • Toussaint EFA, Seidel M, Arriaga-Varela E, Hájek J, Král D, Sekerka L, Short AEZ, Fikáček M (2017) The peril of dating beetles. Syst Entomol 42:1–10

    Article  Google Scholar 

  • Townsend CHT (1886) Coleoptera found in dead trunks of Tilia americana L. in October. Can Entomol 18:65–68

    Article  Google Scholar 

  • Ulyshen MD (2015) Insect-mediated nitrogen dynamics in decomposing wood. Ecol Entomol 40:97–112

    Article  Google Scholar 

  • Ulyshen MD (2016) Wood decomposition as influenced by invertebrates. Biol Rev 91:70–85

    Article  PubMed  Google Scholar 

  • Ulyshen MD (2018a) Ecology and conservation of Passalidae. In: Ulyshen MD (ed) Saproxylic insects: diversity, ecology and conservation. Springer, Heidelberg, pp 129–147

    Google Scholar 

  • Ulyshen MD (2018b) Saproxylic Diptera. In: Ulyshen MD (ed) Saproxylic insects: diversity, ecology and conservation. Springer, Heidelberg, pp 167–192

    Google Scholar 

  • Ulyshen MD, Hanula JL (2010) Patterns of saproxylic beetle succession in loblolly pine. Agric For Entomol 12:187–194

    Article  Google Scholar 

  • Ulyshen MD, Wagner TL (2013) Quantifying arthropod contributions to wood decay. Methods Ecol Evol 4:345–352

    Article  Google Scholar 

  • Ulyshen MD, Wagner TL, Mulrooney JE (2014) Contrasting effects of insect exclusion on wood loss in a temperate forest. Ecosphere 5:article 47

    Article  Google Scholar 

  • Ulyshen MD, Müller J, Seibold S (2016) Bark coverage and insects influence wood decomposition: Direct and indirect effects. Appl Soil Ecol 105:25–30

    Article  Google Scholar 

  • Ulyshen MD, Shefferson R, Horn S, Taylor MK, Bush B, Brownie C, Seibold S, Strickland MS (2017) Below- and above-ground effects of dead wood and termites in plantation forests. Ecosphere 8:e01910

    Article  Google Scholar 

  • Ulyshen MD, Pawson S, Branco M, Horn S, Hoebeke ER, Gossner MM (2018) Utilization of non-native wood by saproxylic insects. In: Ulyshen MD (ed) Saproxylic insects: diversity, ecology and conservation. Springer, Heidelberg, pp 797–834

    Google Scholar 

  • Vanderwel MC, Malcolm JR, Smith SM, Islam N (2006) Insect community composition and trophic guild structure in decaying logs from eastern Canadian pine-dominated forests. Forest Ecol Manag 225:190–199

    Article  Google Scholar 

  • Wallace AR (1869) The Malay Archipelago. Macmillan

    Google Scholar 

  • Wallace HR (1953) The ecology of the insect fauna of pine stumps. J Anim Ecol 22:154–171

    Article  Google Scholar 

  • Wang B, Ma J, McKenna DD, Yan EV, Zhang H, Jarzembowski EA (2014) The earliest known longhorn beetle (Cerambycidae: Prioninae) and implications for the early evolution of Chrysomeloidea. J Syst Palaeontol 12:565–574

    Article  Google Scholar 

  • Wasmann E (1893) Einige neue Termiten aus Ceylon und Madagascar, mit Bemerkungen über der Gäste. Wiener Entomologische Zeitung 12:239–247

    Google Scholar 

  • Watanabe H, Noda H, Tokuda G, Lo N (1998) A cellulase gene of termite origin. Nature 394:330–331

    Article  PubMed  CAS  Google Scholar 

  • Weedon JT, Cornwell WK, Cornelissen JHC, Zanne AE, Wirth C, Coomes DA (2009) Global meta-analysis of wood decomposition rates: a role for trait variation among species? Ecol Lett 12:45–56

    Article  PubMed  Google Scholar 

  • Wegensteiner R, Wermelinger B, Herrmann M (2015) Natural enemies of bark beetles: predators, parasitoids, pathogens and nematodes. In: Vega FE, Hofstetter RW (eds) Bark beetles: biology and ecology of native and invasive species. Elsevier, San Diego, pp 247–304

    Chapter  Google Scholar 

  • Wende B, Gossner MM, Grass I, Arnstadt T, Hofrichter M, Floren A, Linsenmair KE, Weisser WW, Steffan-Dewenter I (2017) Trophic level, successional age and trait matching determine specialization of deadwood-based interaction networks of saproxylic beetles. Proc R Soc Lond B Biol 284:1854

    Article  Google Scholar 

  • Werner PA, Prior LD (2007) Tree-piping termites and growth and survival of host trees in savanna woodland of north Australia. J Trop Ecol 23:611–622

    Article  Google Scholar 

  • Willis KJ, McElwain JC (2002) The evolution of plants. Oxford University Press, Oxford

    Google Scholar 

  • Wilson K, White DJB (1986) The anatomy of wood: its diversity and variability. Stobart and Son Ltd, London

    Google Scholar 

  • Wood TG, Johnson RA, Ohiagu CE (1977) Populations of termites (Isoptera) in natural and agricultural ecosystems in Southern Guinea savanna near Mokwa, Nigeria. Geo Eco Trop 1:139–148

    CAS  Google Scholar 

  • Woodwell GM, Whittaker RH, Houghton RA (1975) Nutrient concentrations in plants in the Brookhaven oak-pine forest. Ecology 56:318–332

    Article  CAS  Google Scholar 

  • Xu B, Janson JC, Sellos D (2001) Cloning and sequencing of a molluscan endo-β-1,4-glucanase gene from the blue mussel, Mytilus edulis. Eur J Biochem 268:3718–3727

    Article  PubMed  CAS  Google Scholar 

  • Yamada A, Inoue T, Noda S, Hongoh Y, Ohkuma M (2007) Evolutionary trend of phylogenetic diversity of nitrogen fixation genes in the gut community of wood-feeding termites. Mol Ecol 16:3768–3777

    Article  PubMed  CAS  Google Scholar 

  • Yan EV, Lawrence JF, Beattie R, Beutel RG (2017) At the dawn of the great rise: †Ponomarenkia belmonthensis (Insecta: Coleoptera), a remarkable new Late Permian beetle from the Southern Hemisphere. J Syst Palaeontol 48:1–9

    Google Scholar 

  • Yang Z-Q, Wang X-Y, Zhang Y-N (2014) Recent advances in biological control of important native and invasive forest pests in China. Biol Control 68(Suppl C):117–128

    Article  Google Scholar 

  • Zavada MS, Mentis MT (1992) Plant-animal interaction: the effect of Permian megaherbivores on the glossopterid flora. Am Midl Nat 127:1–12

    Article  Google Scholar 

Download references

Acknowledgments

We thank Martin Gossner and Mike Ferro for providing images used in some of the figures and Jessica Mou for providing comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael D. Ulyshen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 This is a U.S. government work and its text is not subject to copyright protection in the United States; however, its text may be subject to foreign copyright protection.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ulyshen, M.D., Šobotník, J. (2018). An Introduction to the Diversity, Ecology, and Conservation of Saproxylic Insects. In: Ulyshen, M. (eds) Saproxylic Insects. Zoological Monographs, vol 1. Springer, Cham. https://doi.org/10.1007/978-3-319-75937-1_1

Download citation

Publish with us

Policies and ethics