Skip to main content

Part of the book series: Studies in Systems, Decision and Control ((SSDC,volume 149))

  • 729 Accesses

Abstract

Affordable and reliable energy is not only central to prosperity, but also to poverty reduction, local development, environmental integrity, quality of life, growth, and progress. Given the importance and wide scale of energy generation all around the world, its ever growing economic, social and environmental aspects need to be taken into better consideration. The sustainability performance of energy operations shall be assessed on a project basis, as energy generation projects may significantly vary, depending on the needs and circumstances. This chapter introduces a novel approach for evaluating energy projects from a sustainability point of view and estimates their sustainability performance as a decision-making support tool. Decision environments can sometimes be complicated for an individual decision maker (DM) to consider every aspect of the problem. Group decision making (GDM) can be advantageous to reduce the impact of biased and personal opinions on the decision process. Moreover, DMs’ judgments are mostly far from being completely certain, making it more difficult to put their ratings into numerical forms. In such circumstances, the fuzzy set theory can be applied to better represent DMs’ preferences. This chapter applies GDM together with the fuzzy set theory to find the importance of the selected evaluation criteria. Then, GDM and the fuzzy set theory are combined with VIKOR (Vlse Kriterijumska Optimizacija Kompromisno Resenje) technique to rank the energy project alternatives. This approach is particularly useful for its strength in dealing with actual energy projects so that it can support both researchers and business managers to compare the sustainability performance of planned or realized power plants in a balanced manner. The usability of the proposed approach is shown in a case study from Turkey, where different energy projects are evaluated for their overall sustainability performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

Download references

Acknowledgements

The authors would like to express their sincere gratitude to the experts for their invaluable support in the evaluation. This research was supported by Galatasaray University Research Fund (Projects number: 17.402.004 and 17.402.009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gülçin Büyüközkan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Karabulut, Y., Büyüközkan, G. (2018). Sustainability Performance Evaluation of Energy Generation Projects. In: Kahraman, C., Kayakutlu, G. (eds) Energy Management—Collective and Computational Intelligence with Theory and Applications. Studies in Systems, Decision and Control, vol 149. Springer, Cham. https://doi.org/10.1007/978-3-319-75690-5_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-75690-5_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-75689-9

  • Online ISBN: 978-3-319-75690-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics