Skip to main content

Nutritional Considerations for Concurrent Training

  • Chapter
  • First Online:
Concurrent Aerobic and Strength Training

Abstract

Employing nutritional ergogenic aids is an established practice for supporting exercise training-induced performance gains in almost every athletic sphere. Concurrent training (i.e. combining resistance with endurance exercise) poses unique physiological challenges that likely require specific tailoring of nutritional strategies. In particular, nutrition for the concurrent athlete aims to: (1) support muscle growth for maximising hypertrophic response that occurs when resistance training is performed in conjunction with endurance exercise whilst (2) promoting aerobic adaptation in the face of strength training. This chapter discusses the potential role of macronutrients, and a list of emerging ‘nutraceuticals’, to provide the backdrop for maximising physiological adaptations to concurrent training.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hickson RC. Interference of strength development by simultaneously training for strength and endurance. Eur J Appl Physiol. 1980;45:255–63.

    Article  CAS  Google Scholar 

  2. Coffey VG, Hawley JA. Concurrent exercise training: do opposites distract? J Physiol. 2017;595(9):2883–96.

    Article  CAS  PubMed  Google Scholar 

  3. Kumar V, Selby A, Rankin D, Patel R, Atherton P, Hildebrandt W, Williams J, Smith K, Seynnes O, Hiscock N, Rennie MJ. Age-related differences in the dose-response of muscle protein synthesis to resistance exercise in young and old men. J Physiol. 2009;587:211–7.

    Article  CAS  PubMed  Google Scholar 

  4. Biolo G, Maggi SP, Williams BD, Tipton KD, Wolfe RR. Increased rates of muscle protein turnover and amino acid transport after resistance exercise in humans. Am J Phys. 1995;268(3 Pt 1):E514–20.

    CAS  Google Scholar 

  5. Phillips S, Tipton K, Aarsland A, Wolf SE, Wolfe R. Mixed muscle protein synthesis and breakdown after resistance exercise in humans. Am J Phys. 1997;273:E99–107.

    CAS  Google Scholar 

  6. Burd NA, West DWD, Moore DR, Atherton PJ, Staples AW, Prior T, Tang JE, Rennie MJ, Baker SK, Phillips SM. Enhanced amino acid sensitivity of myofibrillar protein synthesis persists for up to 24 h after resistance exercise in young men. J Nutr. 2011;141(4):568–73.

    Article  CAS  PubMed  Google Scholar 

  7. Brook MS, Wilkinson DJ, Mitchell WK, Lund JN, Szewczyk NJ, Greenhaff PL, Smith K, Atherton PJ. Skeletal muscle hypertrophy adaptations predominate in the early stages of resistance exercise training, matching deuterium oxide-derived measures of muscle protein synthesis and mechanistic target of rapamycin complex 1 signaling. FASEB J. 2015;29(11):4485–96.

    Article  CAS  PubMed  Google Scholar 

  8. Camera DM, West DW, Phillips SM, Rerecich T, Stellingwerff T, Hawley JA, et al. Protein ingestion increases myofibrillar protein synthesis after concurrent exercise. Med Sci Sports Exerc. 2015;47(1):82–91.

    Article  CAS  PubMed  Google Scholar 

  9. Donges CE, Burd NA, Duffield R, Smith GC, West DW, Short MJ, et al. Concurrent resistance and aerobic exercise stimulates both myofibrillar and mitochondrial protein synthesis in sedentary middle-aged men. J Appl Physiol. 2012;112:1992–2001.

    Article  CAS  PubMed  Google Scholar 

  10. Smith K, Reynolds N, Downie S, Patel A, Rennie MJ. Effects of flooding amino acids on incorporation of labeled amino acids into human muscle protein. Am J Phys. 1998;275:E73–8.

    CAS  Google Scholar 

  11. Greenhaff PL, Karagounis LG, Peirce N, Simpson EJ, Hazell M, Layfield R, et al. Disassociation between the effects of amino acids and insulin on signaling, ubiquitin ligases, and protein turnover in human muscle. Am J Physiol Endocrinol Metab. 2008;295:E595–604.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Atherton PJ, Smith K, Etheridge T, Rankin D, Rennie MJ. Distinct anabolic signalling responses to amino acids in C2C12 skeletal muscle cells. Amino Acids. 2010a;38:1533–9.

    Article  CAS  PubMed  Google Scholar 

  13. Wilkinson DJ, Hossain T, Hill DS, Phillips BE, Crossland H, Williams J, et al. Effects of leucine and its metabolite β-hydroxy-β-methylbutyrate on human skeletal muscle protein metabolism. J Physiol. 2013;591:2911–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Moore DR, Robinson MJ, Fry JL, Tang JE, Glover EI, Wilkinson SB, et al. Ingested protein dose response of muscle and albumin protein synthesis after resistance exercise in young men. Am J Clin Nutr. 2009;89:161–8.

    Article  CAS  PubMed  Google Scholar 

  15. Witard OC, Jackman SR, Breen L, Smith K, Selby A, Tipton KD. Myofibrillar muscle protein synthesis rates subsequent to a meal in response to increasing doses of whey protein at rest and after resistance exercise. Am J Clin Nutr. 2014;99(1):86–95.

    Article  CAS  PubMed  Google Scholar 

  16. Tipton KD, Elliott TA, Cree MG, Aarsland AA, Sanford AP, Wolfe RR. Stimulation of net muscle protein synthesis by whey protein ingestion before and after exercise. Am J Physiol Endocrinol Metab. 2007;292(1):E71–6.

    Article  CAS  PubMed  Google Scholar 

  17. Atherton PJ, Rennie MJ. Protein synthesis a low priority for exercising muscle. J Physiol. 2006;573(Pt 2):288–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Tang JE, Perco JG, Moore DR, Wilkinson SB, Phillips SM. Resistance training alters the response of fed state mixed muscle protein synthesis in young men. Am J Physiol Regul Integr Comp Physiol. 2008;294:R172–8.

    Article  CAS  PubMed  Google Scholar 

  19. Hoffman JR, Ratamess NA, Tranchina CP, Rashti SL, Kang J, Faigenbaum AD. Effect of protein-supplement timing on strength, power, and body-composition changes in resistance-trained men. Int J Sport Nutr Exerc Metab. 2009;19(2):172–85.

    Article  CAS  PubMed  Google Scholar 

  20. Schoenfeld BJ, Aragon AA, Krieger JW. The effect of protein timing on muscle strength and hypertrophy: a meta-analysis. J Int Soc Sports Nutr. 2013;10(1):53.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Atherton PJ, Etheridge T, Watt PW, Wilkinson D, Selby A, Rankin D, et al. Muscle full effect after oral protein: time-dependent concordance and discordance between human muscle protein synthesis and mTORC1 signaling. Am J Clin Nutr. 2010b;92:1080–8.

    Article  CAS  PubMed  Google Scholar 

  22. Areta JL, Burke LM, Ross ML, Camera DM, West DW, Broad EM, et al. Timing and distribution of protein ingestion during prolonged recovery from resistance exercise alters myofibrillar protein synthesis. J Physiol. 2013;591(Pt 9):2319–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Res PT, Groen B, Pennings B, Beelen M, Wallis GA, Gijsen AP, et al. Protein ingestion before sleep improves postexercise overnight recovery. Med Sci Sports Exerc. 2012;44:1560–9.

    Article  CAS  PubMed  Google Scholar 

  24. Harber MP, Konopka AR, Jemiolo B, Trappe SW, Trappe TA, Reidy PT. Muscle protein synthesis and gene expression during recovery from aerobic exercise in the fasted and fed states. Am J Physiol Regul Integr Comp Physiol. 2010;299(5):R1254–62.

    Article  CAS  PubMed  Google Scholar 

  25. Wilkinson SB, Phillips SM, Atherton PJ, Patel R, Yarasheski KE, Tarnopolsky MA, et al. Differential effects of resistance and endurance exercise in the fed state on signalling molecule phosphorylation and protein synthesis in human muscle. J Physiol. 2008;586(15):3701–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Coffey VG, Zhong Z, Shield A, Canny BJ, Chibalin AV, Zierath JR, et al. Early signaling responses to divergent exercise stimuli in skeletal muscle from well-trained humans. FASEB J. 2006;20(1):190–2.

    Article  CAS  PubMed  Google Scholar 

  27. Breen L, Philp A, Witard OC, Jackman SR, Selby A, Smith K, et al. The influence of carbohydrate-protein co-ingestion following endurance exercise on myofibrillar and mitochondrial protein synthesis. J Physiol. 2011;589(Pt 16):4011–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Moore DR, Camera DM, Areta JL, Hawley JA. Beyond muscle hypertrophy: why dietary protein is important for endurance athletes. Appl Physiol Nutr Metab. 2014;7:1–11.

    Google Scholar 

  29. Pasiakos SM, McClung HL, McClung JP, Margolis LM, Andersen NE, Cloutier GJ, et al. Leucine-enriched essential amino acid supplementation during moderate steady state exercise enhances postexercise muscle protein synthesis. Am J Clin Nutr. 2011;94:809–18.

    Article  CAS  PubMed  Google Scholar 

  30. Lunn WR, Pasiakos SM, Colletto MR, Karfonta KE, Carbone JW, Anderson JM, et al. Chocolate milk and endurance exercise recovery: protein balance, glycogen, and performance. Med Sci Sports Exerc. 2012;44(4):682–91.

    Article  CAS  PubMed  Google Scholar 

  31. Phillips SM. Dietary protein requirements and adaptive advantages in athletes. Br J Nutr. 2012;108(Suppl. 2):S158–67.

    Article  CAS  PubMed  Google Scholar 

  32. Tarnopolsky M. Protein requirements for endurance athletes. Nutrition. 2004;20:662–8.

    Article  CAS  PubMed  Google Scholar 

  33. Cermak NM, Res PT, de Groot LC, Saris WH, van Loon LJ. Protein supplementation augments the adaptive response of skeletal muscle to resistance-type exercise training: a meta-analysis. Am J Clin Nutr. 2012a;96(6):1454–64.

    Article  CAS  PubMed  Google Scholar 

  34. Naclerio F, Larumbe-Zabala E. Effects of whey protein alone or as part of a multi-ingredient formulation on strength, fat-free mass, or lean body mass in resistance-trained individuals: a meta-analysis. Sports Med. 2016;46(1):125–37.

    Article  PubMed  Google Scholar 

  35. Atherton PJ, Kumar V, Selby AL, Rankin D, Hildebrandt W, Phillips BE, et al. Enriching a protein drink with leucine augments muscle protein synthesis after resistance exercise in young and older men. Clin Nutr. 2017;36(3):888–95.

    Article  CAS  PubMed  Google Scholar 

  36. Churchward-Venne TA, Breen L, Di Donato DM, Hector AJ, Mitchell CJ, Moore DR, et al. Leucine supplementation of a low-protein mixed macronutrient beverage enhances myofibrillar protein synthesis in young men: a double-blind, randomized trial. Am J Clin Nutr. 2014;99(2):276–86.

    Article  CAS  PubMed  Google Scholar 

  37. Hawley JA, Leckey JJ. Carbohydrate dependence during prolonged, intense endurance exercise. Sports Med. 2015;45(Suppl 1):S5–12.

    Article  PubMed  Google Scholar 

  38. Hultman E, Bergstrom J. Muscle glycogen synthesis in relation to diet studied in normal subjects. Acta Med Scand. 1967;182:109–17.

    Article  CAS  PubMed  Google Scholar 

  39. Burke LM, Millet G, Tarnopolsky MA, International Association of Athletics Federations. Nutrition for distance events. J Sports Sci. 2007;25(Suppl 1):S29–38.

    Article  PubMed  Google Scholar 

  40. Burke LM, van Loon LJC, Hawley JA. Postexercise muscle glycogen resynthesis in humans. J Appl Physiol. 2017;122(5):1055–67.

    Article  CAS  PubMed  Google Scholar 

  41. Philp A, Hargreaves M, Baar K. More than a store: regulatory roles for glycogen in skeletal muscle adaptation to exercise. Am J Physiol Endocrinol Metab. 2012;302:E1343–51.

    Article  CAS  PubMed  Google Scholar 

  42. Philp A, Burke LM, Baar K. Altering endogenous carbohydrate availability to support training adaptations. Nestle Nutr Inst Workshop Ser. 2011;69:19–31.

    Article  CAS  PubMed  Google Scholar 

  43. Hansen AK, Fischer CP, Plomgaard P, Andersen JL, Saltin B, Pedersen BK. Skeletal muscle adaptation: training twice every second day vs. training once daily. J Appl Physiol. 2005;98:93–9.

    Article  PubMed  Google Scholar 

  44. Hulston CJ, Venables MC, Mann CH, Martin C, Philp A, Baar K, et al. Training with low muscle glycogen enhances fat metabolism in well-trained cyclists. Med Sci Sports Exerc. 2010;42:2046–55.

    Article  CAS  PubMed  Google Scholar 

  45. Impey SG, Hammond KM, Shepherd SO, Sharples AP, Stewart C, Limb M, et al. Fuel for the work required: a practical approach to amalgamating train-low paradigms for endurance athletes. Physiol Rep. 2016;4(10):e12803.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Yeo WK, Paton CD, Garnham AP, Burke LM, Carey AL, Hawley JA. Skeletal muscle adaptation and performance responses to once a day versus twice every second day endurance training regimens. J Appl Physiol. 2008;105:1462–70.

    Article  CAS  PubMed  Google Scholar 

  47. Vogt M, Puntschart A, Howald H, Mueller B, Mannhart C, Gfeller-Tuescher L, et al. Effects of dietary fat on muscle substrates, metabolism, and performance in athletes. Med Sci Sports Exerc. 2003;35:952–60.

    Article  CAS  PubMed  Google Scholar 

  48. Zajac A, Poprzecki S, Maszczyk A, Czuba M, Michalczyk M, Zydek G. The effects of a ketogenic diet on exercise metabolism and physical performance in off-road cyclists. Nutrients. 2014;6:2493–508.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Burke LM. Re-examining high-fat diets for sports performance: did we call the ‘nail in the coffin’ too soon? Sports Med. 2015;45(Suppl 1):S33–49.

    Article  PubMed  Google Scholar 

  50. Knuiman P, Hopman MTE, Mensink M. Glycogen availability and skeletal muscle adaptations with endurance and resistance exercise. Nutr Metab (Lond). 2015;12:59.

    Article  CAS  Google Scholar 

  51. Blomstrand E, Saltin B. Effect of mucle glycogen on glucose, lactate and amino acid metabolism during exercise and recovery in human subjects. J Physiol. 1999;514(Pt 1):293–302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Lemon PW, Mullin JP. Effect of initial muscle glycogen levels on protein catabolism during exercise. J Appl Physiol Respir Environ Exerc Physiol. 1980;48:624–9.

    CAS  PubMed  Google Scholar 

  53. Van Hall G, Saltin B, Wagenmakers AJ. Muscle protein degradation and amino acid metabolism during prolonged knee-extensor exercise in humans. Clin Sci (Lond). 1999;97:557–67.

    Article  Google Scholar 

  54. Howarth KR, Moreau NA, Phillips SM, Gibala MJ. Coingestion of protein with carbohydrate during recovery from endurance exercise stimulates skeletal muscle protein synthesis in humans. J Appl Physiol. 2009;106:1394–402.

    Article  CAS  PubMed  Google Scholar 

  55. Escobar KA, Van Dusseldorp TA, Kerksick CM. Carbohydrate intake and resistance-based exercise: are current recommendations reflective of actual need? Br J Nutr. 2017;116:2053–65.

    Article  CAS  Google Scholar 

  56. Rosset R, Lecoultre V, Egli L, Cros J, Dokumaci AS, Zwygart K, et al. Postexercise repletion of muscle energy stores with fructose or glucose in mixed meals. Am J Clin Nutr. 2017;105(3):609–17.

    Article  CAS  PubMed  Google Scholar 

  57. Bolster DR, Crozier SJ, Kimball SR, Jefferson LS. AMP-activated protein kinase suppresses protein synthesis in rat skeletal muscle through down-regulated mammalian target of rapamycin (mTOR) signaling. J Biol Chem. 2002;277(27):23977–80.

    Article  CAS  PubMed  Google Scholar 

  58. Xu J, Ji J, Yan XH. Cross-talk between AMPK and mTOR in regulating energy balance. Crit Rev Food Sci Nutr. 2012;52(5):373–81.

    Article  CAS  PubMed  Google Scholar 

  59. Pasiakos SM, Vislocky LM, Carbone JW, Altieri N, Konopelski K, Freake HC, et al. Acute energy deprivation affects skeletal muscle protein synthesis and associated intracellular signaling proteins in physically active adults. J Nutr. 2010;140:745–51.

    Article  CAS  PubMed  Google Scholar 

  60. Hulmi JJ, Laakso M, Mero AA, Häkkinen K, Ahtiainen JP, Peltonen H. The effects of whey protein with or without carbohydrates on resistance training adaptations. J Int Soc Sports Nutr. 2015;12:48.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Rasmussen BB, Tipton KD, Miller SL, Wolf SE, Wolfe RR. An oral essential amino acid-carbohydrate supplement enhances muscle protein anabolism after resistance exercise. J Appl Physiol. 2000;88(2):386–92.

    Article  CAS  PubMed  Google Scholar 

  62. Robergs RA, Pearson DR, Costill DL, Fink WJ, Pascoe DD, Benedict MA, et al. Muscle glycogenolysis during differing intensities of weightresistance exercise. J Appl Physiol. 1991;70:1700–6.

    Article  CAS  PubMed  Google Scholar 

  63. Staples AW, Burd NA, West DW, Currie KD, Atherton PJ, Moore DR, et al. Carbohydrate does not augment exercise-induced protein accretion versus protein alone. Med Sci Sports Exerc. 2011;43:1154–61.

    Article  CAS  PubMed  Google Scholar 

  64. Deane CS, Wilkinson DJ, Phillips BE, Smith K, Etheridge T, Atherton PJ. “Nutraceuticals” in relation to human skeletal muscle and exercise. Am J Physiol Endocrinol Metab. 2017;312:E282–99.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Nissen SL, Abumrad NN. Nutritional role of the leucine metabolite β-hydroxy β-methylbutyrate (HMB). J Nutr Biochem. 1997;8:300–11.

    Article  CAS  Google Scholar 

  66. Nissen S, Sharp R, Ray M, Rathmacher JA, Rice D, Fuller JC, et al. Effect of leucine metabolite beta-hydroxy-beta-methylbutyrate on muscle metabolism during resistance-exercise training. J Appl Physiol. 1996;81:2095–104.

    Article  CAS  PubMed  Google Scholar 

  67. Panton LB, Rathmacher JA, Baier S, Nissen S. Nutritional supplementation of the leucine metabolite β-hydroxy-β-methylbutyrate (HMB) during resistance training. Nutrition. 2000;16:734–9.

    Article  CAS  PubMed  Google Scholar 

  68. Wilson JM, Lowery RP, Joy JM, Andersen JC, Wilson SMC, Stout JR, et al. The effects of 12 weeks of beta-hydroxy-beta-methylbutyrate free acid supplementation on muscle mass, strength, and power in resistance-trained individuals: a randomized, double-blind, placebo-controlled study. Eur J Appl Physiol. 2014;114:1217–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Kreider RB, Ferreira M, Wilson M, Almada AL. Effects of calcium β-hydroxy-β methylbutyrate (HMB) supplementation during resistance-training on markers of catabolism, body composition and strength. Int J Sports Med. 1999;20:503–9.

    Article  CAS  PubMed  Google Scholar 

  70. Slater G, Jenkins D, Logan P, Lee H, Vukovich M, Rathmacher J, et al. Beta hydroxy-beta-methylbutyrate (HMB) supplementation does not affect changes in strength or body composition during resistance training in trained men. Int J Sport Nutr Exerc Metab. 2001;11:384–96.

    Article  CAS  PubMed  Google Scholar 

  71. Fuller JC, Sharp RL, Angus HF, Khoo PY, Rathmacher JA. Comparison of availability and plasma clearance rates of β-hydroxy-β-methylbutyrate delivery in the free acid and calcium salt forms. Br J Nutr. 2015;114:1403–9.

    Article  CAS  PubMed  Google Scholar 

  72. Vukovich MD, Dreifort GD. Effect of beta-hydroxy beta-methylbutyrate on the onset of blood lactate accumulation and V(O)(2) peak in endurance-trained cyclists. J Strength Cond Res. 2001;15:491–7.

    CAS  PubMed  Google Scholar 

  73. Lamboley CRH, Royer D, Dionne IJ. Effects of beta-hydroxy-beta-methylbutyrate on aerobic-performance components and body composition in college students. Int J Sport Nutr Exerc Metab. 2007;17:56–69.

    Article  CAS  PubMed  Google Scholar 

  74. Robinson EH, Stout JR, Miramonti AA, Fukuda DH, Wang R, Townsend JR, et al. High-intensity interval training and β-hydroxy-β-methylbutyric free acid improves aerobic power and metabolic thresholds. J Int Soc Sports Nutr. 2014;11:16.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Miramonti AA, Stout JR, Fukuda DH, Robinson EH, Wang R, La Monica MB, et al. The effects of four weeks of high intensity interval training and β-hydroxy-β-methylbutyric free acid supplementation on the onset of neuromuscular fatigue. J Strength Cond Res. 2016;30:626–34.

    Article  PubMed  Google Scholar 

  76. Knitter AE, Panton L, Rathmacher JA, Petersen A, Sharp R. Effects of beta-hydroxy-beta-methylbutyrate on muscle damage after a prolonged run. J Appl Physiol. 2000;89:1340–4.

    Article  CAS  PubMed  Google Scholar 

  77. Van Koevering M, Nissen S. Oxidation of leucine and a-ketoisocaproate to b-hydroxy-b-methylbutyrate in vivo. Am J Phys. 1992;262(1 Pt 1):E27–31.

    Google Scholar 

  78. Wilson GJ, Wilson JM, Manninen AH. Effects of beta-hydroxy-beta-methylbutyrate (HMB) on exercise performance and body composition across varying levels of age, sex, and training experience: a review. Nutr Metab (Lond). 2008;5(1):17.

    Article  CAS  Google Scholar 

  79. McGlory C, Galloway SDR, Hamilton DL, McClintock C, Breen L, Dick JR, et al. Temporal changes in human skeletal muscle and blood lipid composition with fish oil supplementation. Prostaglandins Leukot Essent Fatty Acids. 2014;90:199–206.

    Article  CAS  PubMed  Google Scholar 

  80. Smith GI, Atherton PJ, Reeds DN, Mohammed BS, Rankin D, Rennie MJ, et al. Omega-3 polyunsaturated fatty acids augment the muscle protein anabolic response to hyperaminoacidemiahyperinsulinemia in healthy young and middle aged men and women. Clin Sci. 2011;121:267–78.

    Article  CAS  Google Scholar 

  81. Kamolrat T, Gray SR. The effect of eicosapentaenoic and docosahexaenoic acid on protein synthesis and breakdown in murine C2C12 myotubes. Biochem Biophys Res Commun. 2013;432:593–8.

    Article  CAS  PubMed  Google Scholar 

  82. Lalia AZ, Dasari S, Robinson MM, Abid H, Morse DM, Klaus KA, et al. Influence of omega-3 fatty acids on skeletal muscle protein metabolism and mitochondrial bioenergetics in older adults. Aging. 2017;9(4):1096–129.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Rodacki LF, Pereira G, Naliwaiko K, Coelho I, Pequito D. Fish-oil supplementation enhances the effects of strength training in elderly women. J Clin Nutr. 2012;95(2):428–36.

    Article  CAS  Google Scholar 

  84. McGlory C, Wardle SL, Macnaughton LS, Witard OC, Scott F, Dick J, et al. Fish oil supplementation suppresses resistance exercise and feeding-induced increases in anabolic signaling without affecting myofibrillar protein synthesis in young men. Physiol Rep. 2016;4:e12715.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Calder PC. n-3 polyunsaturated fatty acids, inflammation, and inflammatory diseases. Am J Clin Nutr. 2006;83(6 Suppl):1505S–19S.

    Article  CAS  PubMed  Google Scholar 

  86. Weber PC, Fischer D, von Schacky C, Lorenz R, Strasser T. Dietary Omega Polyunsaturated fatty acids and eicosanoid formation in man. In: Health effects of polyunsaturated fatty acids in seafoods. Orlando: Academic Press; 1986. p. 49–60.

    Chapter  Google Scholar 

  87. Corder KE, Newsham KR, McDaniel JL, Ezekiel UR, Weiss EP. Effects of short-term docosahexaenoic acid supplementation on markers of inflammation after eccentric strength exercise in women. J Sports Sci Med. 2016;15(1):176–83.

    PubMed  PubMed Central  Google Scholar 

  88. Jouris KB, McDaniel JL, Weiss EP. The effect of omega-3 fatty acid supplementation on the inflammatory response to eccentric strength exercise. J Sport Sci Med. 2011;10:432–8.

    Google Scholar 

  89. Tinsley GM, Gann JJ, Huber SR, Andre TL, La Bounty PM, Bowden RG, et al. Effects of fish oil supplementation on postresistance exercise muscle soreness. J Diet Suppl. 2016;21:1–12.

    Google Scholar 

  90. Urso ML. Anti-inflammatory interventions and skeletal muscle injury: benefit or detriment? J Appl Physiol. 2013;115(6):920–8.

    Article  CAS  PubMed  Google Scholar 

  91. Delarue J, Labarthe F, Cohen R. Fish-oil supplementation reduces stimulation of plasma glucose fluxes during exercise in untrained males. Br J Nutr. 2003;90:777–86.

    Article  CAS  PubMed  Google Scholar 

  92. Huffman DM, Michaelson JL, Thomas TR, Derek M, Huffman JL, Michaelson TRT. Chronic supplementation with fish oil increases fat oxidation during exercise in young men. J Exerc Physiol. 2004;7:48–57.

    Google Scholar 

  93. Le Guen M, Chaté V, Hininger-Favier I, Laillet B, Morio B, Pieroni G, et al. A 9-week docosahexaenoic acid-enriched supplementation improves endurance exercise capacity and skeletal muscle mitochondrial function in adult rats. Am J Physiol Endocrinol Metab. 2016;310(3):E213–4.

    Article  PubMed  Google Scholar 

  94. Lanza IR, Blachnio-Zabielska A, Johnson ML, Schimke JM, Jakaitis DR, Lebrasseur NK, et al. Influence of fish oil on skeletal muscle mitochondrial energetics and lipid metabolites during high-fat diet. Am J Physiol Endocrinol Metab. 2013;304:E1391–403.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Bloch K, Schoenheimer R. Biological precursors of creatine. J Biol Chem. 1940;138:167–94.

    Google Scholar 

  96. Greenhaff PL, Bodin K, Soderlund K, Hultman E. Effect of oral creatine supplementation on skeletal muscle phosphocreatine resynthesis. Am J Phys. 1994;266:E725–30.

    CAS  Google Scholar 

  97. Harris RC, Soderlund K, Hultman E. Elevation of creatine in resting and exercised muscle of normal subjects by creatine supplementation. Clin Sci (Lond). 1992;83:367–74.

    Article  CAS  Google Scholar 

  98. Casey A, Greenhaff PL. Does dietary creatine supplementation play a role in skeletal muscle metabolism and performance? Am J Clin Nutr. 2000;72(2 Suppl):607S–17S.

    Article  CAS  PubMed  Google Scholar 

  99. Birch R, Noble D, Greenhaff PL. The influence of dietary creatine supplementation on performance during repeated bouts of maximal isokinetic cycling in man. Eur J Appl Physiol Occup Physiol. 1994;69:268–76.

    Article  CAS  PubMed  Google Scholar 

  100. Earnest CP, Snell PG, Rodriguez R, Almada AL, Mitchell TL. The effect of creatine monohydrate ingestion on anaerobic power indices, muscular strength and body composition. Acta Physiol Scand. 1995;153:207–9.

    Article  PubMed  Google Scholar 

  101. Greenhaff PL, Casey A, Short AH, Harris R, Soderlund K, Hultman E. Influence of oral creatine supplementation of muscle torque during repeated bouts of maximal voluntary exercise in man. Clin Sci (Lond). 1993;84:565–71.

    Article  CAS  Google Scholar 

  102. Snow RJ, McKenna MJ, Selig SE, Kemp J, Stathis CG, Zhao S. Effect of creatine supplementation on sprint exercise performance and muscle metabolism. J Appl Physiol. 1998;84:1667–73.

    Article  CAS  PubMed  Google Scholar 

  103. Branch JD. Effect of creatine supplementation on body composition and performance: a meta-analysis. Int J Sport Nutr Exerc Metab. 2003;13:198–226.

    Article  CAS  PubMed  Google Scholar 

  104. Volek JS, Duncan ND, Mazzetti SA, Staron RS, Putukian M, Gómez AL, et al. Performance and muscle fiber adaptations to creatine supplementation and heavy resistance training. Med Sci Sports Exerc. 1999;31:1147–56.

    Article  CAS  PubMed  Google Scholar 

  105. Cermak NM, Res PT, de Groot LCPGM, Saris WHM, van Loon LJC. Protein supplementation augments the adaptive response of skeletal muscle to resistance-type exercise training: a meta-analysis. Am J Clin Nutr. 2012b;96:1454–64.

    Article  CAS  PubMed  Google Scholar 

  106. Louis M, Poortmans JR, Francaux M, Hultman E, Berre J, Boisseau N, et al. Creatine supplementation has no effect on human muscle protein turnover at rest in the postabsorptive or fed states. Am J Physiol Endocrinol Metab. 2003a;284:E764–70.

    Article  CAS  PubMed  Google Scholar 

  107. Louis M, Poortmans JR, Francaux M, Berré J, Boisseau N, Brassine E, et al. No effect of creatine supplementation on human myofibrillar and sarcoplasmic protein synthesis after resistance exercise. Am J Physiol Endocrinol Metab. 2003b;285:E1089–94.

    Article  CAS  PubMed  Google Scholar 

  108. Parise G, Mihic S, MacLennan D, Yarasheski KE, Tarnopolsky MA. Effects of acute creatine monohydrate supplementation on leucine kinetics and mixed-muscle protein synthesis. J Appl Physiol. 2001;91:1041–7.

    Article  CAS  PubMed  Google Scholar 

  109. McCarthy JJ, Esser K. Counterpoint: satellite cell addition is not obligatory for skeletal muscle hypertrophy. J Appl Physiol. 2007;103:1100–2.

    Article  PubMed  Google Scholar 

  110. Brook MS, Wilkinson DJ, Phillips BE, Perez-Schindler J, Philp A, Smith K, et al. Skeletal muscle homeostasis and plasticity in youth and ageing: impact of nutrition and exercise. Acta Physiol. 2016;216(1):15–41.

    Article  CAS  Google Scholar 

  111. Ziegenfuss T, Lowery LM, Lemon PW. Acute fluid volume changes in men during three days of creatine supplementation. J Exerc Physiol. 1998;1:1–9.

    Google Scholar 

  112. Safdar A, Yardley NJ, Snow R, Melov S, Tarnopolsky MA. Global and targeted gene expression and protein content in skeletal muscle of young men following short-term creatine monohydrate supplementation. Physiol Genomics. 2008;32:219–28.

    Article  CAS  PubMed  Google Scholar 

  113. Buford TW, Kreider RB, Stout JR, Greenwood M, Campbell B, Spano M, et al. International Society of Sports Nutrition position stand: creatine supplementation and exercise. J Int Soc Sport Nutr. 2007;4:1–8.

    Article  Google Scholar 

  114. Willoughby DS, Rosene J. Effects of oral creatine and resistance training on myosin heavy chain expression. Med Sci Sports Exerc. 2001;33:1674–81.

    Article  CAS  PubMed  Google Scholar 

  115. Girgis CM, Clifton-Bligh RJ, Hamrick MW, Holick MF, Gunton JE. The roles of vitamin D in skeletal muscle: form, function, and metabolism. Endocr Rev. 2013;34:33–83.

    Article  CAS  PubMed  Google Scholar 

  116. Girgis CM, Mokbel N, Minn Cha K, Houweling PJ, Abboud M, Fraser DR, et al. The vitamin D receptor (VDR) is expressed in skeletal muscle of male mice and modulates 25-hydroxyvitamin D (25OHD) uptake in myofibers. Endocrinology. 2014a;155:3227–37.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  117. Pike JW. Expression of the vitamin d receptor in skeletal muscle: are we there yet? Endocrinology. 2014;155:3214–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  118. Wang Y, DeLuca HF. Is the vitamin D receptor found in muscle? Endocrinology. 2011;152:354–63.

    Article  CAS  PubMed  Google Scholar 

  119. Girgis CM, Clifton-Bligh RJ, Mokbel N, Cheng K, Gunton JE. Vitamin D signaling regulates proliferation, differentiation and myotube size in C2C12 skeletal muscle cells. Endocrinology. 2014b;155(2):347–57.

    Article  CAS  PubMed  Google Scholar 

  120. Salles J, Chanet A, Giraudet C, Patrac V, Pierre P, Jourdan M, et al. 1,25(OH)2-vitamin D3 enhances the stimulating effect of leucine and insulin on protein synthesis rate through Akt/PKB and mTOR mediated pathways in murine C2C12 skeletal myotubes. Mol Nutr Food Res. 2013;25:1–10.

    Google Scholar 

  121. Ceglia L. Vitamin D and its role in skeletal muscle. Curr Opin Clin Nutr Metab Care. 2009;12:628–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Capiati D, Benassati S, Boland RL. 1,25(OH)2-vitamin D3 induces translocation of the vitamin D receptor (VDR) to the plasma membrane in skeletal muscle cells. J Cell Biochem. 2002;86:128–35.

    Article  CAS  PubMed  Google Scholar 

  123. Buitrago CG, Arango NS, Boland RL. 1α,25(OH)2D3-dependent modulation of Akt in proliferating and differentiating C2C12 skeletal muscle cells. J Cell Biochem. 2012;113:1170–81.

    Article  CAS  PubMed  Google Scholar 

  124. Agergaard J, Trøstrup J, Uth J, Iversen JV, Boesen A, Andersen JL, et al. Does vitamin-D intake during resistance training improve the skeletal muscle hypertrophic and strength response in young and elderly men?—a randomized controlled trial. Nutr Metab (Lond). 2015;12:32.

    Article  CAS  Google Scholar 

  125. Barker T, Schneider ED, Dixon BM, Henriksen VT, Weaver LK. Supplemental vitamin D enhances the recovery in peak isometric force shortly after intense exercise. Nutr Metab (Lond). 2013;10:69.

    Article  CAS  Google Scholar 

  126. Ceglia L, Niramitmahapanya S, da Silva Morais M, Rivas DA, Harris SS, Bischoff-Ferrari H, et al. A randomized study on the effect of vitamin d3 supplementation on skeletal muscle morphology and vitamin d receptor concentration in older women. J Clin Endocrinol Metab. 2013;98:E1927–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Ward KA, Das G, Roberts SA, Berry JL, Adams JE, Rawer R, et al. A randomized, controlled trial of vitamin D supplementation upon musculoskeletal health in postmenarchal females. J Clin Endocrinol Metab. 2010;95:4643–51.

    Article  CAS  PubMed  Google Scholar 

  128. Beaudart C, Buckinx F, Rabenda V, Gillain S, Cavalier E, Slomian J, et al. The effects of vitamin D on skeletal muscle strength, muscle mass and muscle power: a systematic review and meta-analysis of randomized controlled trials. J Clin Endocrinol Metab. 2014;99:4336–45.

    Article  CAS  PubMed  Google Scholar 

  129. Chiang CM, Ismaeel A, Griffis RB, Weems S. Effects of vitamin D supplementation on muscle strength in athletes: a systematic review. J Strength Cond Res. 2017;31(2):566–74.

    PubMed  Google Scholar 

  130. Tanaka T, Kassai A, Ohmoto M, Morito K, Kashiwada Y, Takaishi Y, et al. Quantification of phosphatidic acid in foodstuffs using a thin-layer-chromatography-imaging technique. J Agric Food Chem. 2012;60:4156–61.

    Article  CAS  PubMed  Google Scholar 

  131. Fang Y, Vilella-Bach M, Bachmann R, Flanigan A, Chen J. Phosphatidic acid-mediated mitogenic activation of mTOR signaling. Science. 2001;294:1942–5.

    Article  CAS  PubMed  Google Scholar 

  132. Rasmussen BB. Phosphatidic acid: a novel mechanical mechanism for how resistance exercise activates mTORC1 signalling. J Physiol. 2009;587(Pt 14):3415–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. English D, Cui Y, Siddiqui RA. Messenger functions of phosphatidic acid. Chem Phys Lipids. 1996;80:117–32.

    Article  CAS  PubMed  Google Scholar 

  134. Mobley CB, Hornberger TA, Fox CD, Healy JC, Ferguson BS, Lowery RP, et al. Effects of oral phosphatidic acid feeding with or without whey protein on muscle protein synthesis and anabolic signaling in rodent skeletal muscle. J Int Soc Sports Nutr. 2015;12:32.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  135. Jaafar R, De Larichaudy J, Chanon S, Euthine V, Durand C, Naro F, et al. Phospholipase D regulates the size of skeletal muscle cells through the activation of mTOR signaling. Cell Commun Signal. 2013;11:55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Purpura M, Jäger R, Joy JM, Lowery RP, Moore JD, Wilson JM. Effect of oral administration of soy-derived phosphatidic acid on concentrations of phosphatidic acid and lyso-phosphatidic acid molecular species in human plasma. J Int Soc Sports Nutr. 2013;10:P22.

    Article  PubMed Central  Google Scholar 

  137. Joy JM, Gundermann DM, Lowery RP, J¨ager R, McCleary SA, Purpura M, et al. Phosphatidic acid enhances mtor signaling and resistance exercise induced hypertrophy. Nutr Metab. 2014;11:1.

    Article  CAS  Google Scholar 

  138. Escalante G, Alencar M, Haddock B, Harvey P. The effects of phosphatidic acid supplementation on strength, body composition, muscular endurance, power, agility, and vertical jump in resistance trained men. J Int Soc Sports Nutr. 2016;13(1):1.

    Article  CAS  Google Scholar 

  139. Hoffman JR, Stout JR, Williams DR, Wells AJ, Fragala MS, Mangine GT, et al. Efficacy of phosphatidic acid ingestion on lean body mass, muscle thickness and strength gains in resistance-trained men. J Int Soc Sports Nutr. 2012;9(1):1.

    Article  Google Scholar 

  140. Andre TL, Gann JJ, McKinley-Barnard SK, Song JJ, Willoughby DS. Eight weeks of phosphatidic acid supplementation in conjunction with resistance training does not differentially affect body composition and muscle strength in resistance-trained men. J Sports Sci Med. 2016;15:532–9.

    PubMed  PubMed Central  Google Scholar 

  141. Gonzalez AM, Sell KM, Ghigiarelli JJ, Kelly CF, Shone EW, Accetta MR, et al. Effects of phosphatidic acid supplementation on muscle thickness and strength in resistance-trained men. Appl Physiol Nutr Metab. 2017;42(4):443–8.

    Article  CAS  PubMed  Google Scholar 

  142. Bond P. Phosphatidic acid: biosynthesis, pharmacokinetics, mechanisms of action and effect on strength and body composition in resistance-trained individuals. Nutr Metab (Lond). 2017;14:12.

    Article  CAS  Google Scholar 

  143. Bremer J. Carnitine—metabolism and functions. Physiol Rev. 1983;63:1420–80.

    Article  CAS  PubMed  Google Scholar 

  144. Fritz IB, Marquis NR. The role of acylcarnitine esters and carnitine palmityltransferase in the transport of fatty acyl groups across mitochondrial membranes. Proc Natl Acad Sci U S A. 1965;54:1226–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Kerner J, Hoppel C. Fatty acid transport into mitochondria. Biochem Biophys Acta. 2000;1486:1–17.

    CAS  PubMed  Google Scholar 

  146. Hoppel C. The role of carnitine in normal and altered fatty acid metabolism. Am J Kidney Dis. 2003;41:4–12.

    Article  Google Scholar 

  147. Parvin R, Pande SV. Enhancement of mitochondrial carnitine and carnitine acylcarnitine translocase-mediated transport of fatty acids into liver mitochondria under ketogenic conditions. J Biol Chem. 1979;245:5423–9.

    Google Scholar 

  148. Stephens FB, Constantin-Teodosiu D, Laithwaite D, Simpson EJ, Greenhaff PL. Insulin stimulates L-carnitine accumulation in human skeletal muscle. FASEB J. 2006a;20:377–9.

    Article  CAS  PubMed  Google Scholar 

  149. Wall BT, Stephens FB, Constantin-Teodosiu D, Marimuthu K, Macdonald IA, Greenhaff PL. Chronic oral ingestion of L-carnitine and carbohydrate increases muscle carnitine content and alters muscle fuel metabolism during exercise in humans. J Physiol. 2011;5894:963–73.

    Article  CAS  Google Scholar 

  150. Stephens FB, Wall BT, Marimuthu K, Shannon CE, Constantin-Teodosiu D, Macdonald IA, et al. Skeletal muscle carnitine loading increases energy expenditure, modulates fuel metabolism gene networks and prevents body fat accumulation in humans. J Physiol. 2013;591(18):4655–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Vecchiet L, Di Lisa F, Pieralisi G, Ripari P, Menabò R, Giamberardino MA, et al. Influence of L-carnitine administration on maximal physical exercise. Eur J Appl Physiol Occup Physiol. 1990;61(5-6):486–90.

    Article  CAS  PubMed  Google Scholar 

  152. Orer GE, Guzel NA. The effects of acute L-carnitine supplementation on endurance performance of athletes. J Strength Cond Res. 2014;28(2):514–9.

    Article  PubMed  Google Scholar 

  153. Cha YS, Choi SK, Suh H, Lee SN, Cho D, Li K. Effects of carnitine coingested caffeine on carnitine metabolism and endurance capacity in athletes. J Nutr Sci Vitaminol (Tokyo). 2001;47(6):378–84.

    Article  CAS  Google Scholar 

  154. Gorostiaga EM, Maurer CA, Eclache JP. Decrease in respiratory quotient during exercise following L-carnitine supplementation. Int J Sports Med. 1989;10(3):169–74.

    Article  CAS  PubMed  Google Scholar 

  155. Marconi C, Sassi G, Carpinelli A, Cerretelli P. Effects of L-carnitine loading on the aerobic and anaerobic performance of endurance athletes. Eur J Appl Physiol Occup Physiol. 1985;54(2):131–5.

    Article  CAS  PubMed  Google Scholar 

  156. Broad EM, Maughan RJ, Galloway SD. Effects of four weeks L-carnitine L-tartrate ingestion on substrate utilization during prolonged exercise. Int J Sport Nutr Exerc Metab. 2005;15(6):665–79.

    Article  CAS  PubMed  Google Scholar 

  157. Lee JK, Lee JS, Park H, Cha YS, Yoon CS, Kim CK. Effect of L-carnitine supplementation and aerobic training on FABPc content and beta-HAD activity in human skeletal muscle. Eur J Appl Physiol. 2007;99(2):193–9.

    Article  CAS  PubMed  Google Scholar 

  158. Gonzalez JT, Stevenson EJ. New perspectives on nutritional interventions to augment lipid utilisation during exercise. Br J Nutr. 2012;107:339–49.

    Article  CAS  PubMed  Google Scholar 

  159. Soop M, Björkman O, Cederblad G, Hagenfeldt L, Wahren J. Influence of carnitine supplementation on muscle substrate and carnitine metabolism during exercise. J Appl Physiol. 1988;64:2394–9.

    Article  CAS  PubMed  Google Scholar 

  160. Wächter S, Vogt M, Kreis R, Boesch C, Bigler P, Hoppeler H, et al. Long-term administration of L-carnitine to humans: effect on skeletal muscle carnitine content and physical performance. Clin Chim Acta. 2002;318:51–61.

    Article  PubMed  Google Scholar 

  161. Stephens FB, Constantin-Teodosiu D, Laithwaite D, Simpson EJ, Greenhaff PL. An acute increase in skeletal muscle carnitine content alters fuel metabolism in resting human skeletal muscle. J Clin Endocrinol Metab. 2006b;91:5013–8.

    Article  CAS  PubMed  Google Scholar 

  162. Shannon CE, Nixon AV, Greenhaff PL, Stephens FB. Protein ingestion acutely inhibits insulin-stimulated muscle carnitine uptake in healthy young men. Am J Clin Nutr. 2016;103:276–82.

    Article  CAS  PubMed  Google Scholar 

  163. Duncan C, Dougall H, Johnston P, Green S, Brogan R, Leifert C, et al. Chemical generation of nitric oxide in the mouth from the enterosalivary circulation of dietary nitrate. Nat Med. 1995;1:546–51.

    Article  CAS  PubMed  Google Scholar 

  164. Lundberg JO, Weitzberg E, Gladwin MT. The nitrate-nitrite-nitric oxide pathway in physiology and therapeutics. Nat Rev Drug Discov. 2008;7(2):156–67.

    Article  CAS  PubMed  Google Scholar 

  165. Stamler JS, Meissner G. Physiology of nitric oxide in skeletal muscle. Physiol Rev. 2001;81(1):209–37.

    Article  CAS  PubMed  Google Scholar 

  166. Bailey SJ, Winyard P, Vanhatalo A, Blackwell JR, Dimenna FJ, Wilkerson DP, et al. Dietary nitrate supplementation reduces the O2 cost of low-intensity exercise and enhances tolerance to high-intensity exercise in humans. J Appl Physiol. 2009;107:1144–55.

    Article  CAS  PubMed  Google Scholar 

  167. Larsen FJ, Weitzberg E, Lundberg JO, Ekblom B. Effects of dietary nitrate on oxygen cost during exercise. Acta Physiol. 2007;191:59–66.

    Article  CAS  Google Scholar 

  168. Larsen FJ, Schiffer TA, Borniquel S, Sahlin K, Ekblom B, Lundberg JO, et al. Dietary inorganic nitrate improves mitochondrial efficiency in humans. Cell Metab. 2011;13:149–59.

    Article  CAS  PubMed  Google Scholar 

  169. Vanhatalo A, Bailey SJ, Blackwell JR, DiMenna FJ, Pavey TG, Wilkerson DP, et al. Acute and chronic effects of dietary nitrate supplementation on blood pressure and the physiological responses to moderate-intensity and incremental exercise. Am J Physiol Regul Integr Comp Physiol. 2010;299(4):R1121–31.

    Article  CAS  PubMed  Google Scholar 

  170. Lansley KE, Winyard PG, Bailey SJ, Vanhatalo A, Wilkerson DP, Blackwell JR, et al. Acute dietary nitrate supplementation improves cycling time trial performance. Med Sci Sports Exerc. 2011;43:1125–31.

    Article  CAS  PubMed  Google Scholar 

  171. Wylie LJ, Mohr M, Krustrup P, Jackman SR, Ermιdis G, Kelly J, et al. Dietary nitrate supplementation improves team sport-specific intense intermittent exercise performance. Eur J Appl Physiol. 2013;113:1673–84.

    Article  PubMed  Google Scholar 

  172. Arnold JT, Oliver SJ, Lewis-Jones TM, Wylie LJ, Macdonald JH. Beetroot juice does not enhance altitude running performance in well-trained athletes. Appl Physiol Nutr Metab. 2015;40:590–5.

    Article  CAS  PubMed  Google Scholar 

  173. Cermak NM, Res P, Stinkens R, Lundberg JO, Gibala MJ, van Loon LJ. No improvement in endurance performance after a single dose of beetroot juice. Int J Sport Nutr Exerc Metab. 2012c;22:470–8.

    Article  CAS  PubMed  Google Scholar 

  174. Wilkerson DP, Hayward GM, Bailey SJ, Vanhatalo A, Blackwell JR, Jones AM. Influence of acute dietary nitrate supplementation on 50 mile time trial performance in well-trained cyclists. Eur J Appl Physiol. 2012;112:4127–34.

    Article  CAS  PubMed  Google Scholar 

  175. Jonvik KL, Nyakayiru J, van Loon LJ, Verdijk LB. Can elite athletes benefit from dietary nitrate supplementation? J Appl Physiol. 2015;119(6):759–61.

    Article  CAS  PubMed  Google Scholar 

  176. Poortmans JR, Gualano B, Carpentier A. Nitrate supplementation and human exercise performance: too much of a good thing? Curr Opin Clin Nutr Metab Care. 2015;18(6):599–604.

    CAS  PubMed  Google Scholar 

  177. Poveda JJ, Riestra A, Salas E, Cagigas ML, López-Somoza C, Amado JA, et al. Contribution of nitric oxide to exercise-induced changes in healthy volunteers: effects of acute exercise and long-term physical training. Eur J Clin Investig. 1997;27:967–71.

    Article  CAS  Google Scholar 

  178. Perez-Schindler J, Hamilton LD, Moore DR, Baar K, Philp A. Nutritional strategies to support concurrent training. Eur J Sport Sci. 2015;15(1):41–52.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philip J. Atherton .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Etheridge, T., Atherton, P.J. (2019). Nutritional Considerations for Concurrent Training. In: Schumann, M., Rønnestad, B. (eds) Concurrent Aerobic and Strength Training. Springer, Cham. https://doi.org/10.1007/978-3-319-75547-2_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-75547-2_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-75546-5

  • Online ISBN: 978-3-319-75547-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics