Skip to main content

In Situ and Ex Situ Spectrophotometric Characterization of Single- and Multilayer-Coatings II: Experimental Technique and Application Examples

  • Chapter
  • First Online:
Optical Characterization of Thin Solid Films

Part of the book series: Springer Series in Surface Sciences ((SSSUR,volume 64))

  • 1646 Accesses

Abstract

In the previous chapter, the theoretical background for characterization of single layer and multilayer coatings has been outlined. In this chapter, important aspects for the underlying experimental techniques will presented. Furthermore, we demonstrate the application of different dispersion models for characterization of uncoated substrates, single layer coatings of dielectrics, semiconductors, metals and organic coatings. Thereby, the focus has been set to the \( \beta \_{\text{do}} \) model. Finally, the interplay of in situ and ex situ spectroscopy will be demonstrated for a multilayer antireflection coating (V-coating).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. H. Kuzmany, Festkörperspektroskopie. Eine Einführung (Springer, Berlin Heidelberg New York, 1989)

    Google Scholar 

  2. O. Stenzel, The Physics of Thin Film Optical Spectra: An Introduction. Springer Series in Surface Sciences, vol. 44, 2nd edn. (Springer, Berlin Heidelberg, 2015)

    Google Scholar 

  3. A.V. Tikhonravov, M.K. Trubetskov, M.A. Kokarev, T.V. Amotchkina, A. Duparre, E. Quesnel, D. Ristau, S. Günster, Effect of systematic errors in spectral photometric data on the accuracy of determination of optical parameters of dielectric thin films. Appl. Opt. 41, 2555–2560 (2002)

    Article  ADS  Google Scholar 

  4. O. Stenzel, Optical Coatings: “Material Aspects in Theory and Practice” (Springer, Berlin Heidelberg, 2014)

    Book  Google Scholar 

  5. T. Burt, H. ChuanXu, A. Jiang, Performance of compact visual displays—measuring angular reflectance of optically active materials using the Agilent Cary 7000 Universal Measurement Spectrophotometer (UMS), Agilent Application Note 5991-2508EN, 2013

    Google Scholar 

  6. R. Francis, T. Burt, Optical characterization of thin films using a new Universal Measurement Accessory for the Agilent Cary UV-Vis-NIR spectrophotometers, Agilent Application Note 5991-1356EN, 2013

    Google Scholar 

  7. R. Vernhes, L. Martinu, TRACK—A new method for the evaluation of low-level extinction coefficient in optical films. Opt. Expr. 23, 28501–28521 (2015)

    Article  ADS  Google Scholar 

  8. A. Savitzky, M.J.E. Golay, Smoothing and differentiation of data by simplified least squares procedures. Anal. Chem. 36, 1627–1639 (1964)

    Article  ADS  Google Scholar 

  9. B. Vidal, A. Fornier, E. Pelletier, Optical monitoring of nonquarterwave multilayer filters. Appl. Opt. 17, 1038–1047 (1978)

    Article  ADS  Google Scholar 

  10. B. Vidal, A. Fornier, E. Pelletier, Wideband optical monitoring of nonquarterwave multilayer filters. Appl. Opt. 18, 3851–3856 (1979)

    Article  ADS  Google Scholar 

  11. P.J. Bruce, I.J. Hodgkinson, A stable optical photometer for vacuum coating. J. Vac. Sci. Technol., A 3, 436–437 (1985)

    Article  ADS  Google Scholar 

  12. F.J. van Milligen, H.A. Macleod, Development of an automated scanning monochromator for monitoring thin films. Appl. Opt. 24, 1799–1802 (1985)

    Article  ADS  Google Scholar 

  13. I. Powell, J.C.M. Zwinkels, Development of optical monitor for control of thin film deposition. Appl. Opt. 25, 3645–3652 (1986)

    Article  ADS  Google Scholar 

  14. R.P. Netterfield, P.J. Martin, K.H. Müller, In-situ optical monitoring of thin film deposition. SPIE 1988, 10–15 (1012)

    Google Scholar 

  15. B.T. Sullivan, G. Carlow, An overview of optical monitoring techniques, in Optical Interference Coatings, OSA Technical Digest (Optical Society of America, 2010, paper TuC1

    Google Scholar 

  16. A.V. Tikhonravov, M.K. Trubetskov, T.V. Amotchkina, Investigation of the effect of accumulation of thickness errors in optical coating production by broadband optical monitoring. Appl. Opt. 45, 7026–7034 (2006)

    Article  ADS  Google Scholar 

  17. A.V. Tikhonravov, M.K. Trubetskov, Elimination of cumulative effect of thickness errors in monochromatic monitoring of optical coating production: theory. Appl. Opt. 46, 2084–2090 (2007)

    Article  ADS  Google Scholar 

  18. http://www.canon.com/news/2015/sep07e.html

  19. R.R. Willey, Practical Design and Production of Optical Thin Films, 2nd edn. (CRC Press, 2002). ISBN 9780824708498

    Google Scholar 

  20. A.V. Tikhonravov, M.K. Trubetskov, T.V. Amotchkina, Optical monitoring strategies, in ed. by Piegari, Flory, Optical Thin Films and Coatings (Woodhead Publishing Limited, 2013)

    Google Scholar 

  21. J. Gäbler, O. Stenzel, S. Wilbrandt, N. Kaiser, Optische in-situ Prozessverfolgung und -steuerung des Aufdampfens optischer Beschichtungen durch gleichzeitige Messungen des Transmissions- und Reflexionsvermögens der wachsenden Schicht. Vak. Forsch. Prax. 25(6), 22–28 (2013)

    Article  Google Scholar 

  22. http://www.jeti.com

  23. M.R. Baklanov, K.P. Mogilnikov, V.G. Polovinkin, F.N. Dultsev, Determination of pore size distribution in thin films by ellipsometric porosimetry. J. Vac. Sci. Technol. B, 1385–1391 (2000)

    Google Scholar 

  24. C. Murray, C. Flannery, I. Streiter, S.E. Schulz, M.R. Baklanov, K.P. Mogilnikov, C. Himcinschi, M. Friedrich, D.R.T. Zahn, T. Gessner, Comparison of techniques to characterise the density, porosity and elastic modulus of porous low-k SiO xerogel films

    Google Scholar 

  25. S. Wilbrandt, O. Stenzel, Empirical extension to the multioscillator model: the beta-distributed oscillator model. Appl. Opt. 56, 9892-9899 (2017)

    Google Scholar 

  26. E. Nichelatti, Complex refractive index of a slab from reflectance and transmittance: analytical solution. J. Opt. A: Pure Appl. Opt. 4, 400–403 (2002)

    Article  ADS  Google Scholar 

  27. E.D. Palik (ed.), Handbook of Optical Constants of Solids, vol. I, II (Academic Press, Orlando, 1998), pp. 753–763, 766–775, 830–835

    Google Scholar 

  28. K. Friedrich, S. Wilbrandt, O. Stenzel, N. Kaiser, K.H. Hoffmann, Computational manufacturing of optical interference coatings: method, simulation results, and comparison with experiment. Appl. Opt. 49, 3150–3162 (2010)

    Article  ADS  Google Scholar 

  29. D. Franta, D. Nečas, I. Ohlídal, Universal dispersion model for characterization of optical thin films over a wide spectral range: application to hafnia. Appl. Opt. 54, 9108–9119 (2015)

    Article  ADS  Google Scholar 

  30. Center for Nanolithography Research, Rochester Institute of Technology, http://www.rit.edu/~w-lith/thinfilms/thinfilms/thinfilms.html

  31. S. Wilbrandt, C. Franke, V. Todorova, O. Stenzel, N. Kaiser, Infrared optical constants determination by advanced FTIR techniques, in Optical Interference Coatings 2016, OSA Technical Digest (online) (Optical Society of America, 2016), paper MC.10

    Google Scholar 

  32. O. Stenzel, S. Wilbrandt, N. Kaiser, Spektralphotometrische Messungen zur Charakterisierung und Qualitätskontrolle von Oberflächen und Schichten, Colloquium optische Spektrometrie (COSP), 17./18.03.2014

    Google Scholar 

  33. H.J. Hagemann, W. Gudat, C. Kunz, Optical constants from the far infrared to the x-ray region: Mg, Al, Cu, Ag, Au, Bi, C, and Al2O3. J. Opt. Soc. Am. 65, 742–744 (1975)

    Article  ADS  Google Scholar 

  34. S. Babar, J.H. Weaver, Optical constants of Cu, Ag, and Au revisited. Appl. Opt. 54, 477–481 (2015)

    Article  ADS  Google Scholar 

  35. M.R. Querry, Optical constants, Contractor Report CRDC-CR-85034 (1985)

    Google Scholar 

  36. H. Ehrenreich, H.R. Philipp, Optical properties of Ag and Cu. Phys. Rev. 128, 1622–1629 (1962)

    Article  ADS  Google Scholar 

  37. ACD/ChemSketch (Freeware), version 2016.2, Advanced Chemistry Development, Inc., Toronto, ON, Canada, www.acdlabs.com, 2016

  38. The linear optical constants of thin phthalocyanine and fullerite films from the near infrared up to the UV spectral regions: Estimation of electronic oscillator strength values

    Google Scholar 

  39. R. Brendel, D. Bormann, An infrared dielectric function model for amorphous solids. J. Appl. Phys. 71, 1–6 (1992)

    Article  ADS  Google Scholar 

  40. A. Franke, A. Stendal, O. Stenzel, C. von Borczyskowski, Gaussian quadrature approach to the calculation of the optical constants in the vicinity of inhomogeneously broadened absorption lines. Pure Appl. Opt. 5, 845–853 (1996)

    Article  ADS  Google Scholar 

  41. M. Jupe et al., Mixed oxide coatings for advanced fs-laser applications. Proc. SPIE 6720, 67200U (2007)

    Article  Google Scholar 

  42. Final report, Optische Komponenten und Baugruppen mit hohen Lebensdauern für Ultrakurzpuls-Laser und Systeme (Ultra-LIFE), FKZ: 13N11555, Technische Informationsbibliothek

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steffen Wilbrandt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wilbrandt, S., Stenzel, O. (2018). In Situ and Ex Situ Spectrophotometric Characterization of Single- and Multilayer-Coatings II: Experimental Technique and Application Examples. In: Stenzel, O., Ohlídal, M. (eds) Optical Characterization of Thin Solid Films. Springer Series in Surface Sciences, vol 64. Springer, Cham. https://doi.org/10.1007/978-3-319-75325-6_8

Download citation

Publish with us

Policies and ethics