Skip to main content

Universal Dispersion Model for Characterization of Thin Films Over Wide Spectral Range

  • Chapter
  • First Online:
Optical Characterization of Thin Solid Films

Part of the book series: Springer Series in Surface Sciences ((SSSUR,volume 64))

Abstract

The universal dispersion model is a collection of dispersion models (contributions to the dielectric response) describing individual elementary excitation in solids. All contributions presented in this chapter satisfy the basic conditions that follow from the theory of dispersion (time reversal symmetry, Kramers–Kronig consistency and finite sum rule integral). The individual contributions are presented in an unified formalism. In this formalism the spectral distributions of the contributions are parameterized using dispersion functions normalized with respect to the sum rule. These normalized dispersion functions must be multiplied by the transition strengths parameters which can be related to the density of charged particles. The separation of contributions into the transitions strengths and normalized spectral distributions is beneficial since it allows us to elegantly introduce the temperature dependencies into these models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. H.A. Kramers, in Atti Cong. Intern. Fisica, (Transactions of Volta Centenary Congress) Como, vol. 2 (1927), pp. 545–557

    Google Scholar 

  2. R. de Laer Kronig, J. Opt. Soc. Am.; Rev. Sci. Instrum. 12, 547 (1926)

    Google Scholar 

  3. M. Altarelli, D.L. Dexter, H.M. Nussenzveig, D.Y. Smith, Phys. Rev. B 6, 4502 (1972)

    Article  ADS  Google Scholar 

  4. E. Shiles, T. Sasaki, M. Inokuti, D.Y. Smith, Phys. Rev. B 22, 1612 (1980)

    Article  ADS  Google Scholar 

  5. D.Y. Smith, in Handbook of Optical Constants of Solids, vol. 1, ed. by E.D. Palik (Academic Press, Dublin 1985), pp. 35–68

    Google Scholar 

  6. V. Lucarini, K.E. Peiponen, J.J. Saarinen, E.M. Vartiainen, Kramers-Kronig Relations in Optical Materials Research (Springer, Berlin, 2005)

    Google Scholar 

  7. D. Franta, D. Nečas, L. Zajíčková, Thin Solid Films 534, 432 (2013)

    Article  ADS  Google Scholar 

  8. Z.C. Yan, G.W.F. Drake, Phys. Rev. A 52, R4316 (1995)

    Article  ADS  Google Scholar 

  9. M. Dressel, G. Grüner, Electrodynamics of Solids: Optical Properties of Electrons in Matter (University Press, Cambridge, 2002)

    Book  Google Scholar 

  10. D. van der Marel, in Strong interactions in low dimensions (Kluwer Academic Publishers, Dordrecht, 2004), chap. 8, pp. 237–276

    Google Scholar 

  11. B.L. Zhou, J.M. Zhu, Z.C. Yan, Phys. Rev. A 73, 014501 (2006)

    Article  ADS  Google Scholar 

  12. J.A.S. Barker, J.J. Hopfield, Phys. Rev. 135, A1732 (1964)

    Article  ADS  Google Scholar 

  13. F. Wooten, Optical Properties of Solids (Academic Press, New York, 1972)

    Google Scholar 

  14. R. Kubo, J. Phys. Soc. Japan 12, 570 (1957)

    Article  ADS  MathSciNet  Google Scholar 

  15. P.Y. Yu, M. Cardona, Fundamentals of Semiconductors (Springer, Berlin, 2001)

    Google Scholar 

  16. P.B. Allen, in Conceptual Foundations of Material Properties:A Standard Model For Calculation Of Ground- and Excited-state Properties, ed. by M.L. Cohen, S.G. Louie (Elsevier, Amsterdam, 2006), pp. 165–218

    Google Scholar 

  17. H.A. Bethe, E.E. Salpeter, Quantum Mechanics of One- and Two-Electron Atoms (Springer, Berlin, 1957)

    Book  MATH  Google Scholar 

  18. L. Van Hove, Phys. Rev. 89, 1189 (1953)

    Article  ADS  Google Scholar 

  19. S. Adachi, Phys. Rev. B 35, 7454 (1987)

    Article  ADS  Google Scholar 

  20. S. Adachi, Phys. Rev. B 41, 1003 (1990)

    Article  ADS  Google Scholar 

  21. C.C. Kim, J.W. Garland, H. Abad, P.M. Raccah, Phys. Rev. B 45, 11749 (1992)

    Article  ADS  Google Scholar 

  22. C.C. Kim, J.W. Garland, P.M. Raccah, Phys. Rev. B 47, 1876 (1993)

    Article  ADS  Google Scholar 

  23. C. Tanguy, Phys. Rev. Lett. 75, 4090 (1995)

    Article  ADS  Google Scholar 

  24. C. Tanguy, Solid State Commun. 98, 65 (1996)

    Article  ADS  Google Scholar 

  25. C.M. Herzinger, B.D. Johs, W.A. McGahan, J.A. Woollam, W. Paulson, J. Appl. Phys. 83, 3323 (1998)

    Article  ADS  Google Scholar 

  26. B.D. Johs, C.M. Herzinger, J.H. Dinan, A. Cornfeld, J.D. Benson, Thin Solid Films 313–314, 137 (1998)

    Article  Google Scholar 

  27. A.B. Djurišić, E.H. Li, Phys. Status Solidi B 216, 199 (1999)

    Article  ADS  Google Scholar 

  28. A.B. Djurišić, Y. Chan, E.H. Li, Semicond. Sci. Technol. 16, 902 (2001)

    Article  ADS  Google Scholar 

  29. Y.S. Ihn, T.J. Kim, T.H. Ghong, Y. Kim, D.E. Aspnes, J. Kossut, Thin Solid Films 455–456, 222 (2004)

    Article  Google Scholar 

  30. L.V. Rodríguez-de Marcos, J.I. Larruquert, Opt. Express 24, 28561 (2016)

    Article  ADS  Google Scholar 

  31. D. Franta, D. Nečas, L. Zajíčková, I. Ohlídal, Thin Solid Films 571, 496 (2014)

    Article  ADS  Google Scholar 

  32. R.N. Bracewell, The Fourier Transform and Its Applications (McGraw-Hill, Singapore, 1999)

    MATH  Google Scholar 

  33. M. Abramowitz, I.A. Stegun (eds.), Handbook of mathematical functions with Formulas, Graphs, and Mathematical Tables (National Bureau of Standards, 1964)

    Google Scholar 

  34. M.E. Thomas, S.K. Andersson, R.M. Sova, R.I. Joseph, Infrared Phys. Technol. 39, 235 (1998)

    Article  ADS  Google Scholar 

  35. D. De Sousa Meneses, M. Malki, P. Echegut, J. Non-Cryst. Solids 352, 769 (2006)

    Article  ADS  Google Scholar 

  36. D. De Sousa Meneses, J.F. Brun, B. Rousseau, P. Echegut, J. Phys. Condes. Matter 18, 5669 (2006)

    Article  ADS  Google Scholar 

  37. R. Kitamura, L. Pilon, M. Jonasz, Appl. Opt. 46, 8118 (2007)

    Article  ADS  Google Scholar 

  38. J. Humlíček, J. Quant. Spectrosc. Radiat. Transf. 27, 437 (1982)

    Article  ADS  Google Scholar 

  39. R. Brendel, D. Bormann, J. Appl. Phys. 71, 1 (1992)

    Article  ADS  Google Scholar 

  40. D. De Sousa Meneses, G. Gruener, M. Malki, P. Echegut, J. Non-Cryst. Solids 351, 124 (2005)

    Article  ADS  Google Scholar 

  41. S.M. Abrarov, B.M. Quine, Appl. Math. Comput. 218, 1894 (2011)

    MathSciNet  Google Scholar 

  42. J. Kischkat, S. Peters, B. Gruska, M. Semtsiv, M. Chashnikova, M. Klinkmüller, O. Fedosenko, S. Machulik, A. Aleksandrova, G. Monastyrskyi, Y. Flores, W.T. Masselink, Appl. Opt. 71, 6789 (2012)

    Article  ADS  Google Scholar 

  43. J.J. Olivero, R.L. Longbothum, J. Quant. Spectrosc. Radiat. Transf. 17, 233 (1977)

    Article  ADS  Google Scholar 

  44. P. Thompson, D.E. Cox, J.B. Hastings, Appl. Crystallogr. 20, 79 (1987)

    Google Scholar 

  45. J. Humlíček, R. Henn, M. Cardona, Phys. Rev. B 61, 14554 (2000)

    Article  ADS  Google Scholar 

  46. D.W. Berreman, F.C. Unterwald, Phys. Rev. 174, 791 (1968)

    Article  ADS  Google Scholar 

  47. G.S. Jeon, G.D. Mahan, Phys. Rev. B 71, 184306 (2005)

    Article  ADS  Google Scholar 

  48. A.B. Kuzmenko, E.B. Kuzmenko, E. van Heumen, F. Carbone, D. van der Marel, Phys. Rev. Lett. 100, 117401 (2008)

    Article  ADS  Google Scholar 

  49. J. Humlíček, A. Nebojsa, F. Munz, M. Miric, R. Gajic, Thin Solid Films 519, 2624 (2011)

    Article  ADS  Google Scholar 

  50. U. Fano, Phys. Rev. 124, 1866 (1961)

    Article  ADS  Google Scholar 

  51. R. Zallen, M.L. Slade, Phys. Rev. B 18, 5775 (1978)

    Article  ADS  Google Scholar 

  52. P. Lautenschlager, P.B. Allen, M. Cardona, Phys. Rev. B 31, 2163 (1985)

    Article  ADS  Google Scholar 

  53. P. Lautenschlager, M. Garriga, L. Viña, M. Cardona, Phys. Rev. B 36, 4821 (1987)

    Article  ADS  Google Scholar 

  54. A. Debernardi, Phys. Rev. B 57, 12847 (1998)

    Article  ADS  Google Scholar 

  55. D. Franta, D. Nečas, L. Zajíčková, I. Ohlídal, Opt. Mater. Express 4, 1641 (2014)

    Article  Google Scholar 

  56. G. Harbeke, in Optical Properties of Solids, ed. by F. Abelès (North–Holland, Amsterdam, 1972), pp. 21–92

    Google Scholar 

  57. F. Bassani, G. Pastori Parravicini, Electronic States and Optical Transitions in Solids, The Science of the Solid State, vol. 8 (Pergamon Press, USA, 1975)

    Google Scholar 

  58. B. Velický, J. Sak, Phys. Status Solidi 16, 147 (1966)

    Article  Google Scholar 

  59. D. Sell, P. Lawaetz, Phys. Rev. Lett. 26, 311 (1971)

    Article  ADS  Google Scholar 

  60. D. Franta, A. Dubroka, C. Wang, A. Giglia, J. Vohánka, P. Franta, I. Ohlídal. Appl. Surf. Sci. 421, 405 (2017)

    Google Scholar 

  61. S. Adachi, Phys. Rev. B 38, 12966 (1988)

    Article  ADS  Google Scholar 

  62. S. Flügge, H. Marshall, Rechenmethoden der Quantentheorie, 2nd edn. (Springer, Berlin, 1952)

    Google Scholar 

  63. D. Franta, D. Nečas, I. Ohlídal, Appl. Opt. 54, 9108 (2015)

    Article  ADS  Google Scholar 

  64. D. Franta, D. Nečas, L. Zajíčková, I. Ohlídal, J. Stuchlík, D. Chvostová, Thin Solid Films 539, 233 (2013)

    Article  ADS  Google Scholar 

  65. D. Campi, C. Coriasso, J. Appl. Phys. 64, 4128 (1988)

    Article  ADS  Google Scholar 

  66. D. Campi, C. Coriasso, Mater. Lett. 7, 134 (1988)

    Article  Google Scholar 

  67. D. Franta, M. Černák, J. Vohánka, I. Ohlídal, Thin Solid Films 631, 12 (2017)

    Article  ADS  Google Scholar 

  68. G.E. Jellison Jr., F.A. Modine, Appl. Phys. Lett. 69, 371 (1996)

    Article  ADS  Google Scholar 

  69. A.S. Ferlauto, G.M. Ferreira, J.M. Pearce, C.R. Wronski, R.W. Collins, X.M. Deng, G. Ganguly, J. Appl. Phys. 92, 2424 (2002)

    Article  ADS  Google Scholar 

  70. V. Paret, M.L. Thèye, J. Non-Cryst, Solids 266–269, 750 (2000)

    Google Scholar 

  71. M. Gioti, D. Papadimitriou, S. Logothetidis, Diam. Relat. Mater. 9, 741 (2000)

    Article  ADS  Google Scholar 

  72. D. Franta, I. Ohlídal, Acta Phys. Slov. 50, 411 (2000)

    Google Scholar 

  73. D. Franta, L. Zajíčková, I. Ohlídal, J. Janča, Vacuum 60, 279 (2001)

    Article  Google Scholar 

  74. D. Franta, M. Hrdlička, D. Nečas, M. Frumar, I. Ohlídal, M. Pavlišta, Phys. Status Solidi C 5, 1324 (2008)

    Article  ADS  Google Scholar 

  75. D. Franta, D. Nečas, M. Frumar, Phys. Status Solidi C 6, S59 (2009)

    Article  Google Scholar 

  76. D. Franta, D. Nečas, I. Ohlídal, M. Hrdlička, M. Pavlišta, M. Frumar, M. Ohlídal, J. Optoelectron. Adv. Matter. 11, 1891 (2009)

    Google Scholar 

  77. J. Tauc, in Optical Properties of Solids, ed. by F. Abelès (North–Holland, Amsterdam, 1972), pp. 277–313

    Google Scholar 

  78. D. Franta, D. Nečas, L. Zajíčková, I. Ohlídal, Thin Solid Films 571, 490 (2014)

    Article  ADS  Google Scholar 

  79. C. Kittel, Introduction to Solid State Physics, 5th edn. (Wiley, New York, 1976)

    MATH  Google Scholar 

  80. D. Franta, D. Nečas, et al. Software for optical characterization, in newAD2. http://newad.physics.muni.cz

  81. D. Franta, D. Nečas, L. Zajíčková, I. Ohlídal, J. Stuchlík, Thin Solid Films 541, 12 (2013)

    Article  ADS  Google Scholar 

  82. D. Franta, D. Nečas, I. Ohlídal, A. Giglia, in Proceedings of SPIE. Optical Systems Design 2015: Optical Fabrication, Testing, and Metrology V, vol. 9628 (2015), p. 96281U

    Google Scholar 

  83. D. Franta, D. Nečas, I. Ohlídal, A. Giglia, in Photonics Europe 2016: Optical Micro- and Nanometrology VI, Proc. SPIE, vol. 9890 (2016), p. 989014

    Google Scholar 

  84. D. Franta, D. Nečas, A. Giglia, P. Franta, I. Ohlídal, Appl. Surf. Sci. 421, 424 (2017)

    Google Scholar 

  85. I. Ohlídal, D. Franta, D. Nečas, Appl. Surf. Sci. 421, 687 (2017)

    Google Scholar 

Download references

Acknowledgements

We are grateful to Dominik Munzar, Adam Dubroka and David Nečas for reading of the manuscript, discussions and useful comments. This research has been supported by the project LO1411 (NPU I) funded by Ministry of Education Youth and Sports of Czech Republic.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Franta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Franta, D., Vohánka, J., Čermák, M. (2018). Universal Dispersion Model for Characterization of Thin Films Over Wide Spectral Range. In: Stenzel, O., Ohlídal, M. (eds) Optical Characterization of Thin Solid Films. Springer Series in Surface Sciences, vol 64. Springer, Cham. https://doi.org/10.1007/978-3-319-75325-6_3

Download citation

Publish with us

Policies and ethics