Skip to main content

Joint Intensity Fusion Image Synthesis Applied to Multiple Sclerosis Lesion Segmentation

  • Conference paper
  • First Online:
Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries (BrainLes 2017)

Abstract

We propose a new approach to Multiple Sclerosis lesion segmentation that utilizes synthesized images. A new method of image synthesis is considered: joint intensity fusion (JIF). JIF synthesizes an image from a library of deformably registered and intensity normalized atlases. Each location in the synthesized image is a weighted average of the registered atlases; atlas weights vary spatially. The weights are determined using the joint label fusion (JLF) framework. The primary methodological contribution is the application of JLF to MRI signal directly rather than labels. Synthesized images are then used as additional features in a lesion segmentation task using the OASIS classifier, a logistic regression model on intensities from multiple modalities. The addition of JIF synthesized images improved the Dice-Sorensen coefficient (relative to manually drawn gold standards) of lesion segmentations over the standard model segmentations by \(0.0462 \pm 0.0050\) (mean ± standard deviation) at optimal threshold over all subjects and 10 separate training/testing folds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Awate, S., Whitaker, R.: Unsupervised, information-theoretic, adaptive image filtering for image restoration. IEEE Trans. PAMI 28, 364–376 (2006)

    Article  Google Scholar 

  2. Buades, A., Coll, B., Morel, J.M.: Nonlocal image and movie denoising. Int. J. Comput. Vis. 76(2), 123–139 (2008)

    Article  Google Scholar 

  3. Carass, A., et al.: Longitudinal multiple sclerosis lesion segmentation: resource and challenge. NeuroImage 148, 77–102 (2017)

    Article  Google Scholar 

  4. Carass, A., Cuzzocreo, J., Wheeler, M.B., Bazin, P.L., Resnick, S.M., Prince, J.L.: Simple paradigm for extra-cerebral tissue removal: algorithm and analysis. NeuroImage 56(4), 1982–1992 (2011)

    Article  Google Scholar 

  5. Cardoso, M.J., Sudre, C.H., Modat, M., Ourselin, S.: Template-based multimodal joint generative model of brain data. In: IPMI, pp. 17–29 (2015)

    Google Scholar 

  6. DeLong, E.R., DeLong, D.M., Clarke-Pearson, D.L.: Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics 44, 837–845 (1988)

    Article  MATH  Google Scholar 

  7. Dendrou, C.A., Fugger, L., Friese, M.A.: Immunopathology of multiple sclerosis. Nat. Rev. Immunol. 15(9), 545–558 (2015)

    Article  Google Scholar 

  8. Garcia-Lorenzo, D., Francis, S., Narayanan, S., Arnold, D.L., Collins, D.L.: Review of automatic segmentation methods of multiple sclerosis white matter lesions on conventional magnetic resonance imaging. Med. Image Anal. 17(1), 1–18 (2013)

    Article  Google Scholar 

  9. Iglesias, J.E., Sabuncu, M.R.: Multi-atlas segmentation of biomedical images: a survey. Med. Image Anal. 24(1), 205–219 (2015)

    Article  Google Scholar 

  10. Jog, A., Roy, S., Carass, A., Prince, J.L.: Magnetic resonance image synthesis through patch regression. In: Proceedings of IEEE ISBI 2013, pp. 350–353 (2013)

    Google Scholar 

  11. Landman, B.A., Warfield, S.K.: MICCAI 2012 workshop on multi-atlas labeling. In: MICCAI 2012 Grand Challenge and Workshop on Multi-Atlas Labeling Challenge Results (2012)

    Google Scholar 

  12. Mazziotta, J.C., Toga, A.W., Evans, A., Fox, P., Lancaster, J.: A probabilistic atlas of the human brain: theory and rationale for its development. NeuroImage 2(2), 89–101 (1995)

    Article  Google Scholar 

  13. Mejia, A.F., Sweeney, E.M., Dewey, B., Nair, G., Sati, P., Shea, C., Reich, D.S., Shinohara, R.T.: Statistical estimation of T1 relaxation times using conventional magnetic resonance imaging. NeuroImage 133, 176–188 (2016)

    Article  Google Scholar 

  14. Roy, S., Agarwal, H., Carass, A., Bai, Y., Pham, D.L., Prince, J.L.: Fuzzy c-means with variable compactness. In: IEEE International Symposium on Biomedical Imaging (2008)

    Google Scholar 

  15. Roy, S., Carass, A., Prince, J.L., Pham, D.L.: Subject specific sparse dictionary learning for atlas based brain MRI segmentation. In: Wu, G., Zhang, D., Zhou, L. (eds.) MLMI 2014. LNCS, vol. 8679, pp. 248–255. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10581-9_31

    Google Scholar 

  16. Tsaftaris, S.A., Gooya, A., Frangi, A.F., Prince, J.L. (eds.): SASHIMI 2016. LNCS, vol. 9968. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46630-9

    Google Scholar 

  17. Shiee, N., Bazin, P.L., Ozturk, A., Reich, D.S., Calabresi, P.A., Pham, D.L.: A topology-preserving approach to the segmentation of brain images with multiple sclerosis lesions. NeuroImage 49(2), 1524–1535 (2010)

    Article  Google Scholar 

  18. Sled, J.G., Zijdenbos, A.P., Evans, A.C.: A nonparametric method for automatic correction of intensity nonuniformity in MRI data. IEEE Trans. Med. Imaging 17(1), 87–97 (1998)

    Article  Google Scholar 

  19. Subbanna, N., Precup, D., Arnold, D., Arbel, T.: Image: iterative multilevel probabilistic graphical model for detection and segmentation of multiple sclerosis lesions in brain MRI. In: IPMI, pp. 514–526 (2015)

    Google Scholar 

  20. Suttner, L., Mejia, A., Dewey, B., Sati, P., Reich, D., Shinohara, R.: Statistical estimation of white matter microstructure from conventional MRI. NeuroImage: Clinical 12, 615–623 (2016)

    Article  Google Scholar 

  21. Sweeney, E.M., Shinohara, R.T., Shiee, N., Mateen, F.J., Chudgar, A.A., Cuzzocreo, J.L., Calabresi, P.A., Pham, D.L., Reich, D.S., Crainiceanu, C.M.: OASIS is automated statistical inference for segmentation, with applications to multiple sclerosis lesion segmentation in MRI. NeuroImage: Clinical 2, 402–413 (2013)

    Article  Google Scholar 

  22. Tristán-Vega, A., García-Pérez, V., Aja-Fernández, S., Westin, C.F.: Efficient and robust nonlocal means denoising of MR data based on salient features matching. Comput. Methods Programs Biomed. 105(2), 131–144 (2011)

    Article  Google Scholar 

  23. Tustison, N., Avants, B., Wang, H., Xie, L., Coupe, P., Yushkevich, P., Manjon, J.: A patch-based framework for new ITK functionality: Joint fusion, denoising, and non-local super-resolution. Insight Journal (2017)

    Google Scholar 

  24. Wang, H., Suh, J.W., Das, S.R., Pluta, J.B., Craige, C., Yushkevich, P.A.: Multi-atlas segmentation with joint label fusion. IEEE Trans. PAMI 35(3), 611–623 (2013)

    Article  Google Scholar 

  25. Yushkevich, P.A., et al.: Fast automatic segmentation of hippocampal subfields and medial temporal lobe subregions in 3 Tesla and 7 Tesla T2-weighted MRI. Alzheimer’s & Dement. J. Alzheimer’s Assoc. 12(7), P126–P127 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

This work supported by the National Institutes of Health grants: R01-NS094456, R01-EB017255, R01-NS085211, R21-NS093349, R01-NS082347, R01-NS070906 and by the National Multiple Sclerosis Society grant: RG-1507-05243.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Greg M. Fleishman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fleishman, G.M. et al. (2018). Joint Intensity Fusion Image Synthesis Applied to Multiple Sclerosis Lesion Segmentation. In: Crimi, A., Bakas, S., Kuijf, H., Menze, B., Reyes, M. (eds) Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries. BrainLes 2017. Lecture Notes in Computer Science(), vol 10670. Springer, Cham. https://doi.org/10.1007/978-3-319-75238-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-75238-9_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-75237-2

  • Online ISBN: 978-3-319-75238-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics