Skip to main content

Brain Tumor Segmentation in MRI Scans Using Deeply-Supervised Neural Networks

  • Conference paper
  • First Online:
Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries (BrainLes 2017)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10670))

Included in the following conference series:

Abstract

Gliomas are the most frequent primary brain tumors in adults. Improved quantification of the various aspects of a glioma requires accurate segmentation of the tumor in magnetic resonance images (MRI). Since the manual segmentation is time-consuming and subject to human error and irreproducibility, automatic segmentation has received a lot of attention in recent years. This paper presents a fully automated segmentation method which is capable of automatic segmentation of brain tumor from multi-modal MRI scans. The proposed method is comprised of a deeply-supervised neural network based on Holistically-Nested Edge Detection (HED) network. The HED method, which is originally developed for the binary classification task of image edge detection, is extended for multiple-class segmentation. The classes of interest include the whole tumor, tumor core, and enhancing tumor. The dataset provided by 2017 Multimodal Brain Tumor Image Segmentation Benchmark (BraTS) challenge is used in this work for training the neural network and performance evaluations. Experiments on BraTS 2017 challenge datasets demonstrate that the method performs well compared to the existing works. The assessments revealed the Dice scores of 0.86, 0.60, and 0.69 for whole tumor, tumor core, and enhancing tumor classes, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Holland, E.C.: Progenitor cells and glioma formation. Curr. Opin. Neurol. 14(6), 683–688 (2001)

    Article  Google Scholar 

  2. Pereira, S., Pinto, A., Alves, V., Silva, C.A.: Brain tumor segmentation using convolutional neural networks in MRI images. IEEE Trans. Med. Imaging 35, 1240–1251 (2016)

    Article  Google Scholar 

  3. Njeh, I., Sallemi, L., Ayed, I.B., et al.: 3D multimodal MRI brain glioma tumor and edema segmentation: a graph cut distribution matching approach. Comput. Med. Imaging Graph. 40, 108–119 (2015)

    Article  Google Scholar 

  4. Hamamci, A., Kucuk, N., Karaman, K., Engin, K., Unal, G.: Tumor-Cut: segmentation of brain tumors on contrast enhanced MR images for radiosurgery applications. IEEE Trans. Med. Imaging 31, 790–804 (2012)

    Article  Google Scholar 

  5. Raviv, T.R., Van Leemput, K., Menze, B.H., Wells 3rd, W.M., Golland, P.: Segmentation of image ensembles via latent atlases. Med. Image Anal. 14, 654–665 (2010)

    Article  Google Scholar 

  6. Guo, X.G., Schwartz, L., Zhao, B.: Semi-automatic segmentation of multimodal brain tumor using active contours. In: Medical Image Computing and Computer Assisted Intervention, pp. 27–30 (2013)

    Google Scholar 

  7. Prastawa, M., Bullitt, E., Ho, S., Gerig, G.: A brain tumor segmentation framework based on outlier detection. Med. Image Anal. 8, 275–283 (2004)

    Article  Google Scholar 

  8. Prastawa, M., Bullitt, E., Moon, N., Van Leemput, K., Gerig, G.: Automatic brain tumor segmentation by subject specific modification of atlas priors. Acad. Radiol. 10, 1341–1348 (2003)

    Article  Google Scholar 

  9. Cuadra, M.B., Pollo, C., Bardera, A., Cuisenaire, O., Villemure, J.G., Thiran, J.P.: Atlas-based segmentation of pathological MR brain images using a model of lesion growth. IEEE Trans. Med. Imaging 23, 1301–1314 (2004)

    Article  Google Scholar 

  10. Mohamed, A., Zacharaki, E.I., Shen, D., Davatzikos, C.: Deformable registration of brain tumor images via a statistical model of tumor-induced deformation. Med. Image Anal. 10, 752–763 (2006)

    Article  Google Scholar 

  11. Zhang, N., Ruan, S., Lebonvallet, S., Liao, Q., Zhu, Y.: Kernel feature selection to fuse multi-spectral MRI images for brain tumor segmentation. Comput. Vis. Image Underst. 115, 256–259 (2011)

    Article  Google Scholar 

  12. Breiman, L.: Random forests. Mach. Learn. 45, 5–32 (2001)

    Article  MATH  Google Scholar 

  13. Tustison, N.J., Shrinidhi, K.L., Wintermark, M., et al.: Optimal symmetric multimodal templates and concatenated random forests for supervised brain tumor segmentation (simplified) with ANTsR. Neuroinformatics 13, 209–225 (2015)

    Article  Google Scholar 

  14. Pinto, A., Pereira, S., Correia, H., Oliveira, J., Rasteiro, D.M., Silva, C.A.: Brain tumour segmentation based on extremely randomized forest with highlevel features. In: Conference Proceedings IEEE Engineering in Medicine and Biology Society 2015, pp. 3037–3040 (2015)

    Google Scholar 

  15. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521, 436–444 (2015)

    Article  Google Scholar 

  16. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. Adv. Neural. Inf. Process. Syst. 1, 1097–1115 (2012)

    Google Scholar 

  17. Zhao, L., Jia, K.: Multiscale CNNs for brain tumor segmentation and diagnosis. Comput. Math. Methods Med. 2016, 8356291–8356297 (2016)

    Article  Google Scholar 

  18. Havaei, M., Dutil, F., Pal, C., Larochelle, H., Jodoin, P.-M.: A convolutional neural network approach to brain tumor segmentation. In: Proceeding of the Multimodal Brain Tumor Segmentation Challenge, pp. 29–33 (2015)

    Google Scholar 

  19. Bengio, Y., Courville, A., Vincent, P.: Representation learning: a review and new perspectives. IEEE Trans. Pattern Anal. Mach. Intell. 35, 1798–1828 (2013)

    Article  Google Scholar 

  20. Menze, B.H., Jakab, A., Bauer, S., Kalpathy-Cramer, J., Farahani, K., Kirby, J., Burren, Y., Porz, N., Slotboom, J., Wiest, R., Lanczi, L., Gerstner, E., Weber, M.A., Arbel, T., Avants, B.B., Ayache, N., Buendia, P., Collins, D.L., Cordier, N., Corso, J.J., Criminisi, A., Das, T., Delingette, H., Demiralp, Ç., Durst, C.R., Dojat, M., Doyle, S., Festa, J., Forbes, F., Geremia, E., Glocker, B., Golland, P., Guo, X., Hamamci, A., Iftekharuddin, K.M., Jena, R., John, N.M., Konukoglu, E., Lashkari, D., Mariz, J.A., Meier, R., Pereira, S., Precup, D., Price, S.J., Raviv, T.R., Reza, S.M., Ryan, M., Sarikaya, D., Schwartz, L., Shin, H.C., Shotton, J., Silva, C.A., Sousa, N., Subbanna, N.K., Szekely, G., Taylor, T.J., Thomas, O.M., Tustison, N.J., Unal, G., Vasseur, F., Wintermark, M., Ye, D.H., Zhao, L., Zhao, B., Zikic, D., Prastawa, M., Reyes, M., Van Leemput, K.: The multimodal brain tumor image segmentation benchmark (BraTS). IEEE Trans. Med. Imaging 34(10), 1993–2024 (2015)

    Article  Google Scholar 

  21. Bakas, S., Akbari, H., Sotiras, A., Bilello, M., Rozycki, M., Kirby, J.S., Freymann, J.B., Farahani, K., Davatzikos, C.: Advancing the cancer genome atlas glioma MRI collections with expert segmentation labels and radiomic features. Nat. Sci. Data (2017, in press)

    Google Scholar 

  22. Bakas, S., Akbari, H., Sotiras, A., Bilello, M., Rozycki, M., Kirby, J., Freymann, J., Farahani, K., Davatzikos, C.: Segmentation labels and radiomic features for the pre-operative scans of the TCGA-GBM collection. The Cancer Imaging Archive (2017). https://doi.org/10.7937/k9/tcia.2017.klxwjj1q

  23. Bakas, S., Akbari, H., Sotiras, A., Bilello, M., Rozycki, M., Kirby, J., Freymann, J., Farahani, K., Davatzikos, C.: Segmentation labels and radiomic features for the pre-operative scans of the TCGA-LGG collection. The Cancer Imaging Archive (2017). https://doi.org/10.7937/k9/tcia.2017.gjq7r0ef

  24. Urban, G., Bendszus, M., Hamprecht, F., Kleesiek, J.: Multi-modal brain tumor segmentation using deep convolutional neural networks. In: Proceeding of the Multimodal Brain Tumor Segmentation Challenge, pp. 31–35 (2014)

    Google Scholar 

  25. Davy, A., Havaei, M., Warde-farley, D., et al.: Brain tumor segmentation with deep neural networks. In: Proceeding of the Multimodal Brain Tumor Segmentation Challenge, pp. 1–5 (2014)

    Google Scholar 

  26. Rao, V., Sarabi, M.S., Jaiswal, A.: Brain tumor segmentation with deep learning. In: Proceeding of the Multimodal Brain Tumor Segmentation Challenge, pp. 56–59 (2015)

    Google Scholar 

  27. Lun, T.K., Hsu, W.: Brain tumor segmentation using deep convolutional neural network. In: Proceeding of the Multimodal Brain Tumor Image Segmentation Challenge, pp. 26–29 (2016)

    Google Scholar 

  28. Zhao, X., Wu, Y., Song, G., Li, Z., Fan, Y., Zhang, Y.: Brain tumor segmentation using a fully convolutional neural network with conditional random fields. In: Proceeding of the Multimodal Brain Tumor Image Segmentation Challenge, pp. 77–80 (2016)

    Google Scholar 

  29. Lee, C.Y., Xie, S., Gallagher, P., Zhang, Z., Tu, Z.: Deeply-supervised nets. In: Proceedings of AISTATS, pp. 562–570 (2015)

    Google Scholar 

  30. Xie, S., Tu, Z.: Holistically-nested edge detection. Int. J. Comput. Vision, 1–16 (2017)

    Google Scholar 

  31. Zhuge, Y., Krauze, A.V., Ning, H., Cheng, J.C., Arora, B.C., Camphausen, K., Miller, R.W.: Brain tumor segmentation using holistically nested neural networks in MRI images. Med. Phys. 44, 5234–5243 (2017)

    Article  Google Scholar 

  32. Guillemaud, R., Brady, M.: Estimating the bias field of MR images. IEEE Trans. Med. Imaging 16, 238–251 (1997)

    Article  Google Scholar 

  33. Tustison, N.J., Avants, B.B., Cook, P.A., et al.: N4ITK: improved N3 bias correction. IEEE Trans. Med. Imaging 29, 1310–1320 (2010)

    Article  Google Scholar 

  34. Zhuge, Y., Udupa, J.K.: Intensity standardization simplifies brain MR image segmentation. Comput. Vis. Image Underst. 113, 1095–1103 (2009)

    Article  Google Scholar 

  35. Nyul, L.G., Udupa, J.K., Zhang, X.: New variants of a method of MRI scale standardization. IEEE Trans. Med. Imaging 19, 143–150 (2000)

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the Intramural Research Program of the National Cancer Institute, NIH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying Zhuge .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pourreza, R., Zhuge, Y., Ning, H., Miller, R. (2018). Brain Tumor Segmentation in MRI Scans Using Deeply-Supervised Neural Networks. In: Crimi, A., Bakas, S., Kuijf, H., Menze, B., Reyes, M. (eds) Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries. BrainLes 2017. Lecture Notes in Computer Science(), vol 10670. Springer, Cham. https://doi.org/10.1007/978-3-319-75238-9_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-75238-9_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-75237-2

  • Online ISBN: 978-3-319-75238-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics