Skip to main content

Potential Use of Biochar from Sugarcane Bagasse for Treatment of Textile Wastewater

  • Chapter
  • First Online:
Water Scarcity and Ways to Reduce the Impact

Abstract

The use of activated carbon for the treatment of wastewater from textile industries is integral to the production of reusable water. Despite its abundance in countries where textiles are produced and the apparent suitability of sugarcane bagasse (SCB) as a feedstock for the production of activated carbon , this material is not used commercially as it is uneconomic to produce when compared to other biomass sources. This chapter reports on the chemical pretreatment of SCB as a means to increase the production of biochar from SCB. The thermal degradation kinetics of bagasse was examined by thermal gravimetric analysis (TGA). Furthermore, Fourier transfer infrared (FTIR) spectroscopy of evolved gases was recorded to better understand the mechanism by which the treatment process affects the degradation of the SCB during pyrolysis . Two chemicals were used as chemical additives—ammonium sulphate (AS) and diammonium phosphate (DAP). These were added to bagasse as solutions at different concentrations ranging from 0.01 to 1 M prior to pyrolysis. It was generally found that the bagasse treated with additives caused mass degradation at lesser temperatures and formed considerably greater yields of biochar than untreated raw bagasse. Greater concentrations of additives improved the char yield significantly but passed through an optimum additive concentration for char yield. It was reasoned that the optimum was caused by a change in reaction mechanism when additive concentrations became high as evidenced by the FTIR spectrum measured—although this mechanism varies with the different additives. The addition of chemical additives to SCB so as to improve char yield may provide a route by which the SCB may be an economically attractive source of biochar.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Amin, N. K. (2008). Removal of reactive dye from aqueous solutions by adsorption onto activated carbons prepared from sugarcane bagasse pith. Desalination, 223, 152–161.

    Article  CAS  Google Scholar 

  • Balakrishnan, M., & Batra, V. S. (2011). Valorization of solid waste in sugar factories with possible applications in India: A review. Journal of Environmental Management, 92, 2886–2891.

    Article  CAS  Google Scholar 

  • Beeharry, R. P. (1996). Extended sugarcane biomass utilisation for exportable electricity production in mauritius. Biomass and Bioenergy, 11(6), 441–449.

    Article  Google Scholar 

  • Beeharry, R. P. (2001). Strategies for augmenting sugarcane biomass availability for power production in Mauritius. Biomass and Bioenergy, 20(6), 421–429.

    Article  Google Scholar 

  • Carrier, M., Hugo, T., Gorgens, J. & Knoetze, H. (2011). Comparison of slow and vacuum pyrolysis of sugar cane bagasse. Journal of Analytical and Applied Pyrolysis, 90(1), 18–26.

    Article  CAS  Google Scholar 

  • Changpeng, K. L., Liqiang, Z., & Xifeng, Z. (2016). Study on pyrolysis characteristics of lignocellulosic biomass impregnated with ammonia source. Bioresource Technology, 209, 142–147.

    Article  CAS  Google Scholar 

  • Chen, M. Q. (2008). Catalytic effects of eight inorganic additives on pyrolysis of pine wood sawdust by microwave heating. Journal of Analytical and Applied Pyrolysis, 82, 145–150.

    Article  CAS  Google Scholar 

  • Collard, F. X., J. Blin, Bensakhria, A., & Valette, J. (2012). Influence of impregnated metal on the pyrolysis conversion of biomass constituents (Vol. 95, pp. 213–226).

    Article  CAS  Google Scholar 

  • da Gonçalves, G. C., Pereira, N. C., & Veit, M. T. (2016). Production of bio-oil and activated carbon from sugarcane bagasse and molasses. Biomass and Bioenergy, 85, 178–186.

    Article  CAS  Google Scholar 

  • Di Blasi, C., Branca, C., & Galgano, A. (2007). Effects of diammonium phosphate on the yields and composition of products from wood pyrolysis. Industrial & Engineering Chemical Research, 46, 430–438.

    Google Scholar 

  • Eom, I. Y., Kim, J. Y., Kim, T. S., Lee, S. M., Choi, D., Choi, J. G., et al. (2012). Effect of essential inorganic metals on primary thermal degradation of lignocellulosic biomass. Bioresource Technology, 104, 687–694.

    Article  CAS  Google Scholar 

  • FAO. (2015). FAO statistical handbook. World food and agriculture. Food and Agriculture Organization of the United Nations, Rome, 2015.

    Google Scholar 

  • Fu, Q., Argyopoulos, D. S., Tilotta, D. C., & Lucia, L. A. (2008). Understanding the pyrolysis of CCA-treated wood Part I. Effect of metal ions. Journal of Analytical Applied Pyrolysis, 81, 60–64.

    Article  CAS  Google Scholar 

  • Garrett, B., Shorofsky, B., & Radcliffe, R. (2012). Evaluation of textile treatment and treatment alternatives for the village of Jasol in Rajasthan, India. Jal Bhagirathi Foundation and the Northwestern University Global and Ecological Health Engineering Certificate Program.

    Google Scholar 

  • Griffin, G. J. (2011). The effect of fire retardants on combustion and pyrolysis of sugar-cane bagasse. Bioresource Technology, 102, 8199–8204.

    Article  CAS  Google Scholar 

  • Griffin, G. J., Tan, L. C. K., Ho, L. K., & Pannirselvam, M. (2015). Conversion of bagasse to char-water fuel by pyrolysis. Energy and Sustainability VI, 39.

    Google Scholar 

  • Hu, S., Jess, A., & Xu, M. (2007). Kinetic study of Chinese biomass slow pyrolysis: Comparison of different kinetic models. Fuel, 86, 2778–2788.

    Article  CAS  Google Scholar 

  • Jaguaribe, E. F., Medwiros, L. L., Barreto, M. C. S., & Araujo, L. P. (2005). The performance of activated carbons from sugarcane bagasse, babassu, and coconut shells in removing residual chlorine. Brazilian Journal of Chemical Engineering, 22(1), 41–47.

    Article  CAS  Google Scholar 

  • Liodakis, S., Bakirtzis, D., & Dimitrakopoulos, A. P. (2003). Autoignition and thermogravimetric analysis of forest species treated with fire retardants. Thermochimica Acta, 399, 31–42.

    Article  CAS  Google Scholar 

  • Liodakis, S. E., Statheropoulos, M. K., Tzamtis, N. E., Pappa, A. A., & Parissakis, G. K. (1996). The effect of salt and oxide-hydroxide additives on the pyrolysis of cellulose and Pinus halepensis pine needles. Thermochimica Acta, 278, 99–108.

    Article  CAS  Google Scholar 

  • Low, L. W., Teng, T. T., Ahmad, A., Morad, N., & Wong, Y. S. (2011). A novel pretreatment method of lignocellulosic material as adsorbent and kinetic study of dye waste adsorption. Water, Air, and Soil pollution, 218, 293–306.

    Article  CAS  Google Scholar 

  • Low, L. W., Teng, T. T., Morad, N., & Azahari, B. (2012). Studies on the adsorption of methylene blue dye from aqueous solution onto low-cost tartaric acid treated bagasse. APCBEE Procedia, 1, 103–109.

    Article  CAS  Google Scholar 

  • Manya, J. J., & Arauzo, J. (2008). An alternative kinetic approach to describe the isothermal pyrolysis of micro-particles of sugar cane bagasse. Chemical Engineering Journal, 139(3), 549–561.

    Article  CAS  Google Scholar 

  • Ng, C., Marshall, W., Rao, R. M., Bansode, R. R., Losso, J. N., & Portier, R. J. (2003). Granular activated carbons from agricultural by-products: Process description and estimated cost of production. Bulletin Number 881, LSU AgCentre, Baton-Rouge, August 2003.

    Google Scholar 

  • Pappa, A. A., Tzamtzis, N. E., Statheropoulos, M. K., Liodakis, S. E., & Parissakis, G. K. (1995). A comparative study of the effects of fire retardants on the pyrolysis of cellulose and Pinus halepensis pine-needles. Journal of Analytical and Applied Pyrolysis, 31, 85–100.

    Article  CAS  Google Scholar 

  • Sekiguchi, Y., & Shafizadeh, F. (1984). The effect of inorganic additives on the formation, composition, and combustion of cellulosic char. Journal of Applied Polymer Science, 29(4), 1267–1286.

    Article  CAS  Google Scholar 

  • Shen, J., Zhu, S., Liu, X., Zhang, H., & Tan, J. (2010). The prediction of elemental composition of biomass based on proximate analysis. Energy Conversion and Management, 51, 983–987.

    Article  CAS  Google Scholar 

  • Statheropoulos, M., & Kyriakou, S. A. (2000). Quantitative thermogravimetric-mass spectrometric analysis for monitoring the effects of fire retardants on cellulose pyrolysis. Analytica Chimica Acta, 409, 203–214.

    Article  CAS  Google Scholar 

  • Suardane, N. P. G., Ku, M. S., & Lim, J. K. (2011). Effects of diammonium phosphate on the flammability and mechanical properties of bio-composites. Materials and Design, 32(4), 1990–1999.

    Article  CAS  Google Scholar 

  • Tahir, H., Sultan, M., Akhtar, N., Hameed, U., & Abid, T. (2016). Application of natural and modified sugar cane bagasse for the removal of dye from aqueous solution. Journal of Saudi Chemical Society, 20, S115–S121.

    Article  CAS  Google Scholar 

  • Tsai, W. T., Chang, C. Y., Lin, M. C., Chien, S. F., Sun, H. F., & Hsieh, M. F. (2001). Adsorption of acid dye onto activated carbons prepared from agricultural waste bagasse by ZnCl2 activation. Chemosphere, 45, 51–58.

    Article  CAS  Google Scholar 

  • Tzamtzis, N., Pappa, A., & Mourikis, A. (1999). The effect of (NH4)2HPO4 and (NH4)2SO4 on the composition of the volatile organic pyrolysis products of Pinus halepensis pine-needles. Polymer Degradation and Stability, 66, 55–63.

    Article  CAS  Google Scholar 

  • Valix, M., Cheung, W. H., & McKay, G. (2004). Preparation of activated carbon using low temperature carbonisation and physical activation of high ash raw bagasse for acid dye adsorption. Chemosphere, 56, 493–501.

    Article  CAS  Google Scholar 

  • Williams, P. T., & Home, P. A. (1994). The role of metal salts in the pyrolysis of biomass. Renewable Energy, 4(1), 1–13.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregory J. Griffin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ograk, S., Griffin, G.J., Pannirselvam, M. (2019). Potential Use of Biochar from Sugarcane Bagasse for Treatment of Textile Wastewater. In: Pannirselvam, M., Shu, L., Griffin, G., Philip, L., Natarajan, A., Hussain, S. (eds) Water Scarcity and Ways to Reduce the Impact. Applied Environmental Science and Engineering for a Sustainable Future. Springer, Cham. https://doi.org/10.1007/978-3-319-75199-3_7

Download citation

Publish with us

Policies and ethics