Skip to main content

Middle Atmosphere Variability and Model Uncertainties as Investigated in the Framework of the ARISE Project

  • Chapter
  • First Online:
Infrasound Monitoring for Atmospheric Studies

Abstract

The middle atmosphere (from about 10–110 km altitude) is a highly variable environment at seasonal and sub-seasonal timescales. This variability influences the general atmospheric circulation through the propagation and breaking of planetary and gravity waves. Multi-instrument observations, performed in the framework of the ARISE (Atmospheric Dynamics Research InfraStructure in Europe) project, are used to quantify uncertainties in Numerical Weather Prediction (NWP) models such as the one of the European Centre for Medium-Range Weather Forecasts (ECMWF). We show the potential of routine and measurement campaigns to monitor the evolution of the middle atmosphere and demonstrate the limitations of NWP models to properly depict small-scale atmospheric disturbances. Continuous lidar and radar measurements conducted over several days at ALOMAR provide a unique high-resolution full description of solar tides and small-scale structures. Nightly averaged lidar profiles routinely performed in fair weather conditions at the Observatoire Haute-Provence (OHP) and Maïdo observatory (Reunion Island) provide a year-to-year evolution of stratosphere and mesosphere temperature profiles. Routine meteor radar observations depict the evolution of wind profiles and solar tides in the mesosphere and lower thermosphere. With the recent development of the portable Compact Rayleigh Autonomous Lidar (CORAL) which automatically measures temperature profiles at high temporal resolution, the possibility of combining different instruments at different places is now offered, promising the expansion of multi-instrument stations in the near future. Through a better description of infrasound propagation in the middle atmosphere and stratosphere–troposphere couplings, these new middle atmosphere datasets are relevant for infrasound monitoring operations, as well as for weather forecasting and other civil applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alcoverro B, Le Pichon A (2005) Design and optimization of a noise reduction system for infrasonic measurements using elements with low acoustic impedance. J Acoust Soc Am 117:1717–1727

    Article  Google Scholar 

  • Alexander MJ, Geller M, McLandress C, Polavarapu S, Preusse P, Sassi F, Sato K, Eckermann S, Ern M, Hertzog A, Kawatani YA, Pulido M, Shaw T, Sigmond M, Vincent R, Watanabe S (2010) Recent developments in gravity-wave effects in climate models and the global distribution of gravity-wave momentum flux from observations and models. QJR Meteorol Soc 136:1103–1124. https://doi.org/10.1002/qj.637

    Article  Google Scholar 

  • Andrews DG, Holton JR, Leovy CB (1987) Middle atmosphere dynamics. Academic Press, New York, Harcourt Brace Jovanovich

    Google Scholar 

  • Angot G, Keckhut P, Hauchecorne A, Claud C (2012) Contribution of stratospheric warmings to temperature trends in the middle atmosphere from the lidar series obtained at Haute Provence Observatory (44°N). J Geophys Res 117

    Google Scholar 

  • Antier K, Le Pichon A, Vergniolle S, Zielinski C, Lardy M (2007) Multiyear validation of the NRL-G2S wind fields using infrasound from Yasur. J Geophys Res 112:D23110. https://doi.org/10.1029/2007JD008462

    Article  Google Scholar 

  • Assink JD, Le Pichon A, Blanc E, Kallel M, Khemiri L (2014a) Evaluation of wind and temperature profiles from ECMWF analysis on two hemispheres using volcanic infrasound. J Geophys Res 119. https://doi.org/10.1002/2014jd021632

    Google Scholar 

  • Assink JD, Waxler P, Smets PSM, Evers LG (2014b) Bidirectional infrasonic ducts associated with sudden stratospheric warming events. J Geophys Res 119. https://doi.org/10.1002/2013jd021062

    Google Scholar 

  • Assink J, Smets P, Marcillo O, Weemstra C, Lalande J-M, Waxler R, Evers L (2019) Advances in infrasonic remote sensing methods. In: Le Pichon A, Blanc E, Hauchecorne A (eds) Infrasound monitoring for atmospheric studies, 2nd edn. Springer, Dordrecht, pp 605–632

    Google Scholar 

  • Bakas NA, Ioannou PJ (2007) Momentum and energy transport by gravity waves in stochastically driven stratified flows. Part I: radiation of gravity waves from a shear layer. J Atmos Sci 64(5):1509–1529

    Article  Google Scholar 

  • Baldwin M (2003) Major stratospheric warming in the Southern Hemisphere in 2002: Dynamical aspects of the ozone hole split. SPARC newsletter 20:24–26

    Google Scholar 

  • Baldwin MP, Dunkerton TJ (2001) Stratospheric harbingers of anomalous weather regimes. Science 294:581–584. https://doi.org/10.1126/science.1063315

    Article  Google Scholar 

  • Baumgarten G (2010) Doppler Rayleigh/Mie/Raman lidar for wind and temperature measurements in the middle atmosphere up to 80 km. Atmos Meas Tech 3:1509–1518. https://doi.org/10.5194/amt-3-1509-2010

    Article  Google Scholar 

  • Baumgarten G, Fiedler J, Hildebrand J, Lübken FJ (2015) Inertia gravity wave in the stratosphere and mesosphere observed by Doppler wind and temperature lidar. Geophys Res Lett 42:10929–10936. https://doi.org/10.1002/2015GL066991

    Article  Google Scholar 

  • Bedard AJ Jr, Georges TM (2000) Atmospheric infrasound. Phys Today 32–37 (2000)

    Article  Google Scholar 

  • Bertin M, Millet C, Bouche D (2014) A low-order reduced model for the long range propagation of infrasounds in the atmosphere. J Acoust Soc Am 136:37. https://doi.org/10.1121/1.4883388

    Article  Google Scholar 

  • Blanc E, Plantet JL (1998) Detection capability of the IMS infrasound network: a more realistic approach. Infrasound workshop for CTBT monitoring, comprehensive Nuclear-Test-Ban treaty organization, Bruyères-le-Châtel, France, 21–24 July 1998

    Google Scholar 

  • Blanc E, Le Pichon A., Ceranna L, Farges T, Marty J, Herry P (2010) Global scale monitoring of acoustic and gravity waves for the study of the atmospheric dynamics. In: Le Pichon A., Blanc E., Hauchecorne A. (eds) Infrasound monitoring for atmospheric studies. Chapter 21. Springer, Dordrecht, pp 647–664

    Google Scholar 

  • Blanc E, Farges T, Le Pichon A, Heinrich P (2014) Ten year observations of gravity waves from thunderstorms in Western Africa. J Geophys Res 119(11):6409–6418. https://doi.org/10.1002/2013JD020499

    Article  Google Scholar 

  • Blanc E, Ceranna L, Hauchecorn A, Charlton Perez A, Marchetti E, Evers L, Kvaerna T, Lastovicka J, Eliasson L, Crosby N, Blanc Benon P, Le Pichon A, Brachet N, Pilger C, Keckhut P. Assink J, Smets P, Lee C, Kero J, Sindelarova T, Kämpfer N, Rüfenacht R, Farges T, Millet C, Näsholm P, Gibbons S, Espy P, Hibbins R, Heinrich P, Ripepe M, Khaykin S, Mze N, Chum J (2018) Toward an improved representation of the middle atmospheric dynamics thanks to the ARISE project. Surv Geophy 39(2):171–225. https://doi.org/10.1007/s10712-017-9444-0

    Article  Google Scholar 

  • Bowman JR, Baker GE, Bahavar M (2005) Ambient infrasound noise. Geophys Res Lett 32:L09803. https://doi.org/10.1029/2005GL022486

    Article  Google Scholar 

  • Bretherton CS, Smolarkiewicz PK (1989) Gravity waves, compensating subsidence and detrainment around cumulus clouds. J Atmos Sci 46(6):740–759

    Article  Google Scholar 

  • Butler A, Seidel D, Hardiman S, Butchart N, Birner T, Match A (2015) Defining sudden stratospheric warmings. Bull Am Meteorol Soc 96:1913–1928. https://doi.org/10.1175/BAMS-D-13-00173.1

    Article  Google Scholar 

  • Cansi Y (1995) An automatic seismic event processing for detection and location: The PMCC method. Geophys Res Lett 22(9):1021–1024

    Article  Google Scholar 

  • Ceranna L, Le Pichon A, Green DN, Mialle P (2009) The Buncefield explosion: a benchmark for infrasound analysis across Central Europe. Geophys J Int 177:491–508. https://doi.org/10.1111/j.1365-246X.2008.03998.x

    Article  Google Scholar 

  • Chanin ML, Garnier A, Hauchecorne A, Porteneuve J (1989) A Doppler lidar for measuring winds in the middle atmosphere. Geophy Res Let 16(11):1273

    Article  Google Scholar 

  • Chapman S, Lindzen RS (1970) Atmospheric tides: thermal and gravitational, Gordon and Breach, New York, 200 pp

    Google Scholar 

  • Charlton AJ, Polvani LM (2007) A new look at stratospheric sudden warmings. Part I: climatology and modeling benchmarks. J Clim 20:449–469

    Article  Google Scholar 

  • Charlton-Perez AJ, Baldwin MP, Birner T, Black RX, Butler AH, Calvo N, Davis NA, Gerber EP, Gillett N, Hardiman S, Kim J, Krüger K, Lee Y, Manzini E, McDaniel BA, Polvani L, Reichler T, Shaw TA, Sigmond M, Son S, Toohey M, Wilcox L, Yoden S, Christiansen B, Lott F, Shindell D, Yukimoto S, Watanabe S (2013) On the lack of stratospheric dynamical variability in low-top versions of the CMIP5 models. J Geophys Res 118(6):2494–2505. https://doi.org/10.1002/jgrd.50125

    Article  Google Scholar 

  • Charney JG, Drazin PG (1961) Propagation of planetary-scale disturbances from the lower into the upper atmosphere. J Geophys Res 66(1):83–109. https://doi.org/10.1029/JZ066i001p00083

    Article  Google Scholar 

  • Chunchuzov IP, Kulichkov SN, Firstov PP (2013) On acoustic N-wave reflections from atmospheric layered inhomogeneities. Izv Atmos Ocean Phys 49(3):285–297

    Article  Google Scholar 

  • Clauter D, Blandford R (1998) Capability modeling of the proposed international system 60-station infrasonic network. In: Proceedings of the infrasound workshop for CTBT monitoring, Los Alamos National Laboratory report LA-UR-98-56

    Google Scholar 

  • Cohen J, Jones J (2011) Tropospheric precursors and stratospheric warmings. J Clim 24:6562–6572. https://doi.org/10.1175/2011JCLI4160.1

    Article  Google Scholar 

  • Conference on disarmament (1995) Report of the expert group to the Ad Hoc committee on a nuclear test ban, The international monitoring system, CD/NTB/WP.283, 20 Dec 1995

    Google Scholar 

  • Costantino L, Heinrich P, Mze N, Hauchecorne A (2015) A convective gravity wave propagation and breaking in the stratosphere, comparison between WRF model simulations and LIDAR data. Ann Geophys 33:1155–1171. www.ann-geophys.net/33/1155/2015/, https://doi.org/10.5194/angeo-33-1155-2015e

  • Delclos C, Blanc E, Broche P, Glangeaud F, Lacoume JL (1990) Processing and interpretation of microbarograph signals generated by the explosion of Mount St. Helens. J Geophys Res 95(D5):5485–5494

    Article  Google Scholar 

  • de Wit RJ, Hibbins RE, Espy PJ, Orsolini YJ, Limpasuvan V, Kinnison DE (2014) Observations of gravity wave forcing of the mesopause region during the January 2013 major sudden stratospheric warming. Geophys Res Lett 41(13):4745–4752. https://doi.org/10.1002/2014GL060501

    Article  Google Scholar 

  • de Wit RJ, Hibbins RE, Espy PJ (2015) The seasonal cycle of gravity wave momentum flux and forcing in the high latitude northern hemisphere mesopause region. J Atmos Solar Terr Phys 127:21–29. https://doi.org/10.1016/j.jastp.2014.10.002

    Article  Google Scholar 

  • Diamantakis M (2014) Improving ECMWF forecasts of sudden stratospheric warmings. ECMWF Newsletter 141:30–36

    Google Scholar 

  • Donn WL, Rind D (1971) Natural infrasound as an atmospheric probe. Geophys J R Astron Soc 26:111–133

    Article  Google Scholar 

  • Drob DP et al (2008) An empirical model of the Earth’s horizontal wind fields: HWM07. J Geophys Res 113:A12304. https://doi.org/10.1029/2008JA013668

    Article  Google Scholar 

  • Drob DP, Meier RR, Picone JM, Garcés M (2010) Inversion of infrasound signals for passive atmospheric remote sensing. In: Le Pichon A, Blanc E, Hauchecorne A (eds) Infrasound monitoring for atmospheric studies, chapter 24. Springer, Dordrecht, pp 701–732

    Google Scholar 

  • Evers LG, Siegmund P (2009) Infrasonic signature of the 2009 major sudden stratospheric warming. Geophys Res Lett. https://doi.org/10.1029/2009GL041323

    Article  Google Scholar 

  • Fee D, Waxler R, Assink J, Gitterman Y, Given J, Coyne J, Mialle P, Garces M, Drob D, Kleiner D, Hofstetter R, Grenard P (2013) Overview of the 2009 and 2011 Sayarim infrasound calibration experiments. J Geophys Res 118:6122–6143. https://doi.org/10.1002/jgrd.50398

    Article  Google Scholar 

  • Forbes JM (1982) Atmospheric tides: 1. Model description and results for the solar diurnal component. J Geophys Res 87(A7):5222–5240

    Article  Google Scholar 

  • Forbes JM (1995) Tidal and planetary waves. The upper mesosphere and lower thermosphere: a review of experiment and theory. In: Modeling the Ionosphere-Thermosphere, Geophysical Monograph Series, vol 87. AGU, Washington DC, pp 67–87

    Chapter  Google Scholar 

  • Fritts DC (1984) Shear excitation of atmospheric gravity waves. Part II: Nonlinear radiation from a free shear laye. J Atmos Sci 41(4):524–537

    Article  Google Scholar 

  • Fritts DC, Alexander MJ (2003) Gravity wave dynamics and effects in the middle atmosphere. Rev Geophys 41(1):1003. https://doi.org/10.1029/2001rg000106

  • Gainville O, Blanc-Benon P, Blanc E, Roche R, Millet C, Le Piver F, Despres B, Piserchia PF (2010) Misty picture: a unique experiment for the interpretation of the infrasound propagation from large explosive sources. In: Le Pichon A, Blanc E, Hauchecorne A (eds) Infrasound monitoring for atmospheric studies, chapter 18. Springer, Dordrecht, pp 569–592

    Google Scholar 

  • Gerber EP, Orbe C, Polvani LM (2009) Stratospheric influence on the tropospheric circulation revealed by idealized ensemble forecasts. Geophys Res Lett 36:L24801. https://doi.org/10.1029/2009GL040913

    Article  Google Scholar 

  • Gibbons SJ, Asming V, Eliasson L, Fedorov A, Fyen J, Kero J, Koslovskaya E, Kvaerna T, Liszka L, Näsholm SP, Raita T, Roth M, Tiira T, Vinogradov Y (2015) The European Arctic: A laboratory for seismoacoustic studies. Seismol Res Lett 86(3). https://doi.org/10.1785/0220140230

    Article  Google Scholar 

  • Goncharenko L, Chau JL, Condor P, Coster A, Benkevitch L (2013) Ionospheric effects of sudden stratospheric warming during moderate to high solar activity: case study of January 2013. Geophys Res Lett 40(19):4982–4986

    Article  Google Scholar 

  • Green DN, Bowers D (2010) Estimating the detection capability of the International Monitoring System infrasound network. J Geophys Res 115:D18116. https://doi.org/10.1029/2010JD014017

    Article  Google Scholar 

  • Green DN, Le Pichon A, Ceranna L, Evers L (2010) Ground truth events: assessing the capability of infrasound networks using high resolution data analyses. In: Le Pichon A, Blanc E, Hauchecorne A (eds) Infrasound monitoring for atmospheric studies. Springer, Dordrecht

    Google Scholar 

  • Hauchecorne A, Chanin ML (1980) Density and temperature profiles obtained by lidar between 35 and 70 km. Geophys Res Lett 7:565–568. https://doi.org/10.1029/GL007i008p00565

    Article  Google Scholar 

  • Hauchecorne A, Chanin ML (1983) Mid-latitude Lidar observations of planetary waves in the middle atmosphere during the winter of 1981–1982. J Geophys Res 88(C6):3843–3849

    Article  Google Scholar 

  • Hauchecorne A, Chanin ML, Wilson R (1987) Mesospheric temperature inversion and gravity wave breaking. Geophys Res Lett 14(9):933–936

    Article  Google Scholar 

  • Hauchecorne A, Chanin ML, Keckhut P (1991) Climatology and trends of the middle atmospheric temperature (33–87 km) as seen by Rayleigh lidar over the south of France, J Geophys Res 96:15.297–15.309

    Article  Google Scholar 

  • Hauchecorne A, Gonzalez N, Souprayen C, Manson AH, Meek CE, SingerW Scheer J (1994) Gravity-wave activity and its relation with prevailing winds during DYANA. J Atmos Terr Phys 56(13–14):1765–1778

    Article  Google Scholar 

  • Hauchecorne A, Keckhut P, Chanin ML (2010) Dynamics and transport in the middle atmosphere using remote sensing techniques from ground and space. In: Le Pichon A, Blanc E,. Hauchecorne A (eds) Infrasound monitoring for atmospheric studies, chapter 22. Springer, Dordrecht, pp 665–683

    Google Scholar 

  • Hickey MP, Schubert G, Walterscheid RL (2001) Acoustic wave heating of the thermosphere. J Geophys Res 106(A10):21543–21548

    Article  Google Scholar 

  • Hildebrand J, Baumgarten G, Fiedler J, Lübken FJ (2017) Winds and temperatures of the Arctic middle atmosphere during January measured by Doppler lidar. Atmos Chem Phys Discuss. https://doi.org/10.5194/acp-2017-167

  • Hildebrand J, Baumgarten G, Fiedler J, Hoppe UP, Kaifler B, Lübken FJ, Williams BP (2012) Combined wind measurements by two different lidar instruments in the Arctic middle atmosphere. Atmos Meas Tech 5:2433–2445. https://doi.org/10.5194/amt-5-2433-2012

    Article  Google Scholar 

  • Hirooka T (2000) Normal mode Rossby waves as revealed by UARS/ISAMS observations. J Atmos Sci 57(9):1277–1285

    Article  Google Scholar 

  • HirotaI, Hirooka T (1984) Normal mode Rossby waves observed in the upper stratosphere. Part I: First symmetric modes of zonal wavenumbers 1 and 2. J Atmos Sci 41:8, 1253–1267

    Article  Google Scholar 

  • Hocking WK, Fuller B, Vandepeer B (2001) Real-time determination of meteor—related parameters utilizing modern digital technology. J Atmos Solar Terr Phys 63(2–3):155–169. https://doi.org/10.1016/S1364-6826(00)00138-3

    Article  Google Scholar 

  • Höffner J, Lautenbach J (2009) Daylight measurements of mesopause temperature and vertical wind with the mobile scanning iron lidar. Opt Lett 34:1351–1353. https://doi.org/10.1364/OL.34.001351

    Article  Google Scholar 

  • Holton JR (1982) The role of gravity wave induced drag and diffusion in the momentum budget of the mesosphere. J Atmos Sci 39(4):791–799

    Article  Google Scholar 

  • Holton JR (1983) The influence of gravity wave breaking on the general circulation of the middle atmosphere. J Atmos Sci 40:2497–2507

    Article  Google Scholar 

  • Holton JR, Haynes PH, McIntyre ME, Douglass AR, Rood RB, Pfister L (1995) Stratosphere-troposphere exchange. Rev Geophys 33(4):403–439

    Article  Google Scholar 

  • Hoppel KW, Eckermann SD, Coy L, Nedoluha GE, Allen DR, Swadley SD, Baker NL (2013) Evaluation of SSMIS upper atmosphere sounding channels for high-altitude data assimilation. Mon Weather Rev 141:3314–3330. https://doi.org/10.1175/mwr-d-13-00003.1

    Article  Google Scholar 

  • Hupe P, Ceranna L, Pilger C (2016) Data mining on long-term barometric data within the ARISE2 project. In: 18th EGU general assembly, EGU2016, proceedings from the conference held 17–22 Apr 2016 in Vienna, Austria, p 3004

    Google Scholar 

  • Hupe P, Ceranna L, Pilger C, Le Pichon A (2017a) Using the IMS infrasound network for the identification of mountain-associated waves and gravity waves hotspots. In: 19th EGU general assembly, EGU2017, proceedings from the conference held 23–28 Apr 2017 in Vienna, Austria, p 13671

    Google Scholar 

  • Hupe P, Pilger C, Ceranna L (2017b) Using barometric time series of the ims infrasound network for a global analysis of thermally induced atmospheric tides. J Atmos Sci (submitted)

    Google Scholar 

  • Jones PW, Hamilton K, Wilson RJ (1997) A very high resolution general circulation model simulation of the global circulation in austral winter. J Atmos Sci 54(8):1107–1116

    Article  Google Scholar 

  • Kaifler B, Lübken FJ, Höffner J, Morris RJ, Viehl TP (2015) Lidar observations of gravity wave activity in the middle atmosphere over Davis (69°S, 78°E), Antarctica. J Geophys Res 4506–4521. https://doi.org/10.1002/2014jd022879

    Google Scholar 

  • Keckhut P, Hauchecorne A, Chanin ML (1993) A critical review of the database acquired for the long-term surveillance of the middle atmosphere by the French Rayleigh lidars. J Atmos Ocean tech 10(6):850–867

    Article  Google Scholar 

  • Keckhut P, Gelman ME, Wild JD, Tissot F, Miller AJ, Hauchecorne A, Taylor FW (1996) Semidiurnal and diurnal temperature tides (30–55 km): climatology and effect on UARS-LIDAR data comparisons. J Geophys Res, 101:D6, 10299–10310

    Article  Google Scholar 

  • Kishore P, Namboothiri SP, Igarashi K, Murayama Y, Watkins BJ (2002) MF radar observations of mean winds and tides over Poker Flat, Alaska (65.1 N, 147.5 W). Ann Geophys 20:5, 679–690

    Article  Google Scholar 

  • Kodera K (2006) Influence of stratospheric sudden warmings on the equatorial troposphere. Geophys Res Lett 33:L06804. https://doi.org/10.1029/2005GL024510

    Article  Google Scholar 

  • Kohma M, Sato K (2014) Variability of upper tropospheric clouds in the polar region during stratospheric sudden warmings. J Geophys Res Atmos 119:10100–10113. https://doi.org/10.1002/2014JD021746

    Article  Google Scholar 

  • Kulichkov SN, Bush GA (2001) Rapid variations in infrasonic signals at long distances from one-type explosions. Izv Atmos Ocean Phys 37(3):306–313

    Google Scholar 

  • Kulichkov S (2010) On the prospect for acoustic sounding of the fine structure of the middle-atmosphere. In: Le Pichon A, Blanc E, Hauchecorne A (eds) Infrasound monitoring for atmospheric studies, chapter 16. Springer, Dordrecht, pp 511–540

    Google Scholar 

  • Kulichkov SN, Chunchuzov IP, Popov OI (2010) simulating the influence of an atmospheric fine inhomogeneous structure on long-range propagation of pulsed acoustic signals. Izv.Atmos Oceanic Phys 46(1):60–68

    Article  Google Scholar 

  • Kurylo MJ, Solomon S (1990) Network for the detection of stratospheric change: a status and implementation report. NASA upper atmosphere research program and NOAA climate and global change program (NASA), Washington DC

    Google Scholar 

  • Labitzke K (1977) Interannual variability of the winter stratosphere in the Northern Hemisphere. Mon Weather Rev 105:762–770

    Article  Google Scholar 

  • Lalande JM, Sèbe O, Landès M, Blanc-Benon P, Matoza R, Le Pichon A, Blanc E (2012) Infrasound data inversion for atmospheric sounding. Geophys J Int 190:687–701. https://doi.org/10.1111/j.1365-246X.2012.05518.x

    Article  Google Scholar 

  • Lalas DP, Einaudi F (1976) On the characteristics of gravity waves generated by atmospheric shear layers. J Atmos Sci 33(7):1248–1259

    Article  Google Scholar 

  • Landes M, Le Pichon A, Shapiro NM, Hillers G, Campillo M (2014) Explaining global patterns of microbarom observations with wave action models. Geophys J Int 199:1328–1337. https://doi.org/10.1093/gji/ggu324

    Article  Google Scholar 

  • Lee C, Smets P, Charlton-Perez A, Evers L, Harrison G, Marlton G (2019) The potential impact of upper stratospheric measurements on sub-seasonal forecasts in the extra-tropics. In: Le Pichon A, Blanc E, Hauchecorne A (eds) Infrasound monitoring for atmospheric studies, 2nd edn. Springer, Dordrecht, pp 889–910

    Google Scholar 

  • Le Pichon A, Garcés M, Blanc E, Barthélémy M, Drob D (2002) Acoustic propagation and atmosphere characteristics derived from infrasonic waves generated by the Concorde. J Acoust Soc Am 111(1):629–641

    Article  Google Scholar 

  • Le Pichon A, Blanc E, Drob D (2005) Probing high-altitude winds using infrasound. J Geophys Res 110:D20104. https://doi.org/10.1029/2005JD006020

    Article  Google Scholar 

  • Le Pichon A, Ceranna L, Garcés M, Drob D, Millet C (2006) On using infrasound from interacting ocean swells for global continuous measurements of winds and temperature in the stratosphere. J Geophys Res 111:D11106. https://doi.org/10.1029/2005JD006690

    Article  Google Scholar 

  • Le Pichon A, Vergoz J, Blanc E, Guilbert J, Ceranna L, Evers L, Brachet N (2009) Assessing the performance of the International Monitoring System’s infrasound network: geographical coverage and temporal variabilities. J Geophys Res 114:D08112. https://doi.org/10.1029/2008JD010907

    Article  Google Scholar 

  • Le Pichon A, Blanc E, Hauchecorne A (2010) Infrasound monitoring for atmospheric studies. Springer, Dortrecht. ISBN: 978-1-4020-9507-8

    Google Scholar 

  • Le Pichon A, Ceranna L, Vergoz J (2012) Incorporating numerical modeling into estimates of the detection capability of the IMS infrasound network. J Geophys Res 117:D05121. https://doi.org/10.1029/2011JD016670

    Article  Google Scholar 

  • Le Pichon A, Assink JD, Heinrich P, Blanc E, Charlton-Perez A, Lee CF, Keckhut P, Hauchecorne A, Rüfenacht R, Kämpfer N, Drob DP, Smets PSM, Evers LG, Ceranna L, Pilger C, Ross O, Claud C (2015) Comparison of co-located independent ground-based middle atmospheric wind and temperature measurements with numerical weather prediction models. J Geophys Res 120. https://doi.org/10.1002/.2015jd023273

  • Le Pichon A, Hauchecorne A, Keckhut P, Khaykin S, Camas JP, Payen G, Kämpfer N, Rüfenacht R, Ceranna L (2016) Monitoring middle-atmospheric dynamics using independent ground-based wind and temperature measurements at Reunion Island. Geophys Res Abst 18, EGU2016-18553

    Google Scholar 

  • Limpasuvan V, Thompson DWJ, Hartmann DL (2004) The life-cycle of the Northern Hemisphere sudden stratospheric warmings. J Clim 17:2584–2596

    Article  Google Scholar 

  • Lindzen RS (1966) On the theory of the diurnal tide. Mon Wea Rev 94(5):295–301

    Article  Google Scholar 

  • Lindzen RS (1981) Turbulence and stress owing to gravity wave and tidal breakdown. J Geophys Res, 86:C10, 9707–9714

    Article  Google Scholar 

  • Lott F, Plougonven R, Vanneste J (2010) Gravity waves generated by sheared potential vorticity anomalies. J Atmos Sci 67:1, 157-–70

    Google Scholar 

  • Lott F, Guez L (2013) A stochastic parameterization of the gravity waves due to convection and impact on the equatorial stratosphere. J Geophys Res 118(16):8897–8909. https://doi.org/10.1002/jgrd.50705

    Article  Google Scholar 

  • Lübken FJ, Höffner J, Viehl TP, Becker E, Latteck R, Kaifler B, Murphy DJ, Morris RJ (2015) Winter/summer transition in the Antarctic mesopause region. J Geophys Res 120:12394–12409. https://doi.org/10.1002/2015JD023928

    Article  Google Scholar 

  • Lübken FJ, Baumgarten G, Hildebrand J, Schmidlin FJ (2016) Simultaneous and co-located wind measurements in the middle atmosphere by lidar and rocket-borne techniques. Atmos Meas Tech 9, 3911–3919. https://doi.org/10.5194/amt-9-3911-2016, http://www.atmos-meas-tech.net/9/3911/2016/

    Article  Google Scholar 

  • Manney GL, Lawrence ZD (2016) The major stratospheric final warming in 2016: dispersal of vortex air and termination of Arctic chemical ozone loss. Atmos Chem Phys 16:15371–15396. https://doi.org/10.5194/acp-16-15371-2016

    Article  Google Scholar 

  • Manzini E, Karpechko AY, Anstey J, Baldwin MP, Black RX, Cagnazzo C, Calvo N, Charlton-Perez A, Christiansen B, Davini P, Gerber E (2014) Northern winter climate change: assessment of uncertainty in CMIP5 projections related to stratosphere-troposphere coupling. J Geophys Res 119(13):7979–7998

    Google Scholar 

  • Marchetti E, Ripepe M, Delle Donne D, Genco R, Finizola A, Garaebiti E (2013) Blast waves from violent explosive activity at Yasur Volcano, Vanuatu. Geophys Res Lett 40:5838–5843. https://doi.org/10.1002/2013GL057900

    Article  Google Scholar 

  • Marchetti E, Ripepe M, Campus P, Le Pichon A, Brachet N, Blanc E, Gaillard P, Mialle P, Husson P (2019) Infrasound monitoring of volcanic eruptions and contribution of ARISE to the volcanic ash advisory centers. In: Le Pichon A, Blanc E, Hauchecorne A (eds) Infrasound monitoring for atmospheric studies, 2nd edn. Springer, Dordrecht, pp 1141–1162

    Google Scholar 

  • Marlton G, Charlton-Perez A, Harrison G, Lee C (2019) Calculating atmospheric gravity waves parameters from infrasound measurements. In: Le Pichon A, Blanc E, Hauchecorne A (eds) Infrasound monitoring for atmospheric studies, 2nd edn. Springer, Dordrecht, pp 701–719

    Google Scholar 

  • Marty J, Ponceau D, Dalaudier F (2010) Using the international monitoring system infrasound network to study gravity waves. Geophysl Res Lett 37:19

    Google Scholar 

  • Marty J (2019) The IMS infrasound network: current status and technological developments. In: Le Pichon A, Blanc E, Hauchecorne A (eds) Infrasound monitoring for atmospheric studies, 2nd edn. Springer, Dordrecht, pp 3–62

    Google Scholar 

  • Matthias V, Hoffmann P, Manson A, Meek C, Stober G, Brown P, Rapp M (2013) The impact of planetary waves on the latitudinal displacement of sudden stratospheric warmings. Ann Geophys 31:1397–1415. https://doi.org/10.5194/angeo-31-1397-2013

    Article  Google Scholar 

  • Matoza RS, Le Pichon A, Vergoz J, Herry P, Lalande JM, Lee H, Che IY, Rybin A (2011) Infrasonic observations of the June 2009 Sarychev Peak eruption, Kuril Islands: implications for infrasonic monitoring of remote explosive volcanism. J Volcanol Geotherm Res. https://doi.org/10.1016/j.jvolgeores.2010.11.022

    Article  Google Scholar 

  • Matsuno T (1971) A dynamical model of the stratospheric sudden warming. J Atmos Sci 28(8):1479–1494

    Article  Google Scholar 

  • Maury P, Claud C, Manzini E, Hauchecorne A, Keckhut P (2016) Charcateristics of stratospheric warming events during Northern winter. J Geophys Res 121:5368–5380. https://doi.org/10.1002/2015JD024226

    Article  Google Scholar 

  • McIntyre ME (1992) Atmospheric dynamics: some fundamentals, with observational implications. In: The use of EOS for studies of atmospheric physics, pp 313–386

    Google Scholar 

  • Medvedev AS, Klaassen GP (2000) Parameterization of gravity wave momentum deposition based on nonlinear wave interactions: basic formulation and sensitivity tests. J Atmos Solar Terr Phys 62(11):1015–1033

    Article  Google Scholar 

  • Newnham DA, Ford JP, Moffat-Griffin T, Pumphrey HC (2016) Simulation study for measurement of horizontal wind profiles in the polar stratosphere and mesosphere using ground-based observations of ozone and carbon monoxide lines in the 230–250 GHz region. Atmos Meas Tech 9:3309–3323. www.atmos-meas-tech.net/9/3309/2016/, https://doi.org/10.5194/amt-9-3309-2016

    Article  Google Scholar 

  • Mitchell NJ, Pancheva D, Middleton HR, Hagan M (2002) Mean winds and tides in the Arctic mesosphere and lower thermosphere. J Geophys Res 107:A1. https://doi.org/10.1029/2001JA900127

    Article  Google Scholar 

  • Mzé N, Hauchecorne A, Keckhut P, Thétis M (2014) Vertical distribution of gravity wave potential energy from long-term Rayleigh lidar data at a northern middle latitude site. J Geophys Res 119(21)

    Google Scholar 

  • Pawson S, Kodera K, Hamilton K, Shepherd TG, Beagley SR, Boville BA, Langematz U (2000) The GCM–reality intercomparison project for SPARC (GRIPS): scientific issues and initial results. Bull Am Meteorol Soc 81:4, 781–796

    Article  Google Scholar 

  • Pendlebury D, Shepherd TG, Pritchard M, McLandress C (2008) Normal mode Rossby waves and their effects on chemical composition in the late summer stratosphere. Atmos Chem Phys 8(7):1925–1935

    Article  Google Scholar 

  • Pilger C, Bittner M (2009) Infrasound from tropospheric sources: impact on mesopause temperature? J Atmos Solar Terr Phys 71(8–9):816–822. https://doi.org/10.1016/j.jastp.2009.03.008

    Article  Google Scholar 

  • Polvani LM, Waugh DW (2004) Upward wave activity flux as precursor to extreme stratospheric events and subsequent weather regimes. J Clim 17:3548–3554

    Google Scholar 

  • Portnyagin YI et al (2004) Monthly mean climatology of the prevailing winds and tides in the Arctic mesosphere/lower thermosphere. Ann Geophys 22:3395–3410

    Article  Google Scholar 

  • Randel WJ, Wu F, Oltmans SJ, Rosenlof K, Nedoluha GE (2004) Interannual changes of stratospheric water vapor and correlations with tropical tropopause temperatures. J Atmos Sci 61(17):2133–2148

    Article  Google Scholar 

  • Rind D, Donn WL, Dede E (1973) Upper air wind speeds calculated from observations of natural infrasound. J Atmos Sci 30:1726–1729

    Article  Google Scholar 

  • Rind D, Donn WL (1975) Further use of natural infrasound as a continuous monitor of the upper atmosphere. J Atmos Sci 32:1694–1704

    Article  Google Scholar 

  • Rind D (1977) Heating of the lower thermosphere by the dissipation of acoustic waves. J Atmos Terr Phys 39(4):445–456

    Article  Google Scholar 

  • Rüfenacht R, Murk A, Kämpfer N, Eriksson P, Buehler SA (2014) Middle-atmospheric zonal and meridional wind profiles from polar, tropical and mid-latitudes with the ground-based microwave Doppler wind radiometer WIRA. Atmos Meas Tech 7:4491–4505. https://doi.org/10.5194/amt-7-4491-2014

    Article  Google Scholar 

  • Rüfenacht R, Kämpfer N (2019) Continuous middle-atmospheric wind profile observations by Doppler microwave radiometry. In: Le Pichon A, Blanc E, Hauchecorne A (eds) Infrasound monitoring for atmospheric studies, 2nd edn. Springer, Dordrecht, pp 635–647

    Google Scholar 

  • Salby ML (1984) Survey of planetary-scale traveling waves: the state of theory and observations. Rev Geophys 22(2):209–236

    Article  Google Scholar 

  • Sandford DJ, Beldon CL, Hibbins RE, Mitchell NJ (2010) Dynamics of the Antarctic and Arctic mesosphere and lower thermosphere—part 1: mean winds. Atmos Chem Phys 10:10273–10289

    Article  Google Scholar 

  • Schöch A, Baumgarten G, Fiedler J (2008) Polar middle atmosphere temperature climatology from Rayleigh lidar measurements at ALOMAR (69°N). Ann Geophys 26:1681–1698

    Article  Google Scholar 

  • Schoeberl MR (1978) Stratospheric warmings: observations and theory. Rev Geophys 16(4):521–538

    Article  Google Scholar 

  • Schoeberl MR, Hartmann DL (1991) The dynamics of the stratospheric polar vortex and its relation to springtime ozone depletions. Science 251:46–52. https://doi.org/10.1126/science.251.4989.46

    Article  Google Scholar 

  • Shaw TA, Shepherd TG (2008a) Atmospheric science: raising the roof. Nat Geosci 1(1):12–13

    Article  Google Scholar 

  • Shaw TA, Shepherd TG (2008b) Wave-activity conservation laws for the three-dimensional anelastic and Boussinesq equations with a horizontally homogeneous background flow. J Fluid Mech 594:493–506

    Article  Google Scholar 

  • Shepherd TG (2000) The middle atmosphere. J Atmos Solar Terr Phys 62(17):1587–1601

    Article  Google Scholar 

  • Shutts GJ, Gray MEB (1994) A numerical modelling study of the geostrophic adjustment process following deep convection. QJR Meteorol Soc 120(519):1145–1178

    Google Scholar 

  • Sigmond M, Scinocca JF, Kharin VV, Shepherd TG (2013) Enhanced seasonal forecast skill following stratospheric sudden warmings. Nature Geosci 6:98–102. https://doi.org/10.1038/ngeo1698

    Article  Google Scholar 

  • Smets PSM, Evers LG (2014) The life cycle of a sudden stratospheric warming from infrasonic ambient noise observations. J Geophys Res 119:12084–12099. https://doi.org/10.1002/2014JD021905

    Article  Google Scholar 

  • Smets PSM, Assink JD, Le Pichon A, Evers LG (2016) ECMWF SSW forecast evaluation using infrasound. J Geophys Res 121:4637–4650. https://doi.org/10.1002/2015JD024251

    Article  Google Scholar 

  • Smets SM, Assink J, Evers L (2019) The study of sudden stratospheric warmings using infrasound. In: Le Pichon A, Blanc E, Hauchecorne A (eds) Infrasound monitoring for atmospheric studies, 2nd edn. Springer, Dordrecht, pp 723–755

    Google Scholar 

  • Stober G, Matthias V, Jacobi C, Wilhelm S, Höffner J, Chau JL (2017) Exceptionally strong summer-like zonal wind reversal in the upper mesosphere during winter 2015/16. Ann Geophys 35:711–720. https://doi.org/10.5194/angeo-35-711-2017

    Article  Google Scholar 

  • Tailpied D, Le Pichon A, Marchetti E, Assink S Vergniolle (2016) Assessing and optimizing the performance of infrasound networks to monitor volcanic eruptions. Geophys J Int 208(1):437–448. https://doi.org/10.1093/gji/ggw400

    Article  Google Scholar 

  • Thompson DWJ, Baldwin MP, Wallace JM (2002) Stratospheric connection to Northern Hemisphere wintertime weather: implications for prediction. J Clim 15:1421–1428

    Article  Google Scholar 

  • Tripathi OP, Baldwin M, Charlton-Perez AJ, Charron M, Eckermann SD, Gerber E, Harrison RG, Jackson DR, Kim BM, Kuroda Y, Lang A, Mahmood S, Mizuta R, Roff G, Sigmond M, Son SW (2014) Review: the predictability of the extra-tropical Stratosphere on monthly timescales and its impact on the skill of tropospheric forecasts. Q J R Meteoro Soc. ISSN 1477-870X. https://doi.org/10.1002/qj.2432

    Article  Google Scholar 

  • Venkat Ratnam M, Narendra Babu A, Jagannadha Rao VVM, Vijaya Bhaskar Rao S, Narayana Rao D (2008) MST radar and radiosonde observations of inertial gravity wave climatology over tropical stations: source mechanisms. J Geophys Res 113:D7

    Article  Google Scholar 

  • von Zahn U, von Cossart G, Fiedler J, Fricke KH, Nelke G, Baumgarten G, Rees D, Hauchecorne A, Adolfsen K (2000) The ALOMAR Rayleigh/Mie/Raman lidar: objectives, configuration, and performance. Ann Geophys 18:815–833

    Article  Google Scholar 

  • Walker KT, Hedlin MA (2010) A Review of Wind-Noise Reduction Methodologies. In: Le Pichon A, Blanc E, Hauchecorne A (eds) Infrasound monitoring for atmospheric studies. Springer, Dordrecht

    Google Scholar 

  • Whitaker RW (1995) Infrasonic monitoring. In: Proceedings of the 17th annual seismic research symposium, Scottsdale, Arizona. Phillips Lab, Hanscom AFB, Mass, pp 997–1000

    Google Scholar 

  • Williams BP, Fritts DC, She CY, Goldberg RA (2006) Gravity wave propagation through a large semidiurnal tide and instabilities in the mesosphere and lower thermosphere during the winter 2003 MaCWAVE rocket campaign. Ann Geophys 24(4):1199–1208

    Article  Google Scholar 

  • Wilson CR, Szuberla CA, Olson JV (2010) High-latitude observations of infrasound from Alaska and Antarctica: mountains Associated Waves and Geomagnetic/Auroral infrasonic signals. In: Le Pichon A, Blanc E, Hauchecorne A (eds) Infrasound monitoring for atmospheric studies, chapter. Springer, pp 415–451. ISBN:978-1-4020-9507-8

    Google Scholar 

  • Wilson R, Chanin ML, Hauchecorne A (1991) Gravity waves in the middle atmosphere observed by Rayleigh lidar: 1, case studies. J Geophys Res 96(D3):5153–5167

    Article  Google Scholar 

  • Wu DL, Eckermann SD (2008) Global gravity wave variances from Aura MLS: characteristics and interpretation. J Atmos Sci 65(12):3695–3718

    Article  Google Scholar 

Download references

Acknowledgements

This work was partly performed during the course of the ARISE design study project, funded by the European Community’s Horizon 2020 program under grant agreement 653980. We thank Gerard Rambolamanana and the team of the Institut and Geophysics Observatory of Antananarivo (Madagascar). The Madagascar infrasound results would not have been possible without their involvement. We thank M Gausa and JP Camas from Alomar and Maïdo observatories and D. Fritts for relevant comments on this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elisabeth Blanc .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Blanc, E. et al. (2019). Middle Atmosphere Variability and Model Uncertainties as Investigated in the Framework of the ARISE Project. In: Le Pichon, A., Blanc, E., Hauchecorne, A. (eds) Infrasound Monitoring for Atmospheric Studies. Springer, Cham. https://doi.org/10.1007/978-3-319-75140-5_28

Download citation

Publish with us

Policies and ethics