Skip to main content

An Introduction to Smart Energy Systems and Definition of Smart Energy Hubs

  • Chapter
  • First Online:
Operation, Planning, and Analysis of Energy Storage Systems in Smart Energy Hubs

Abstract

The use of information and communication technology (ICT) and control systems in power systems has led to the creation of a concept called the smart grid. The development of this concept in power networks leads to optimal network control, optimal use of equipment, increased quality and reliability of power supply, facilitation of the integration of renewable energy sources (RES), optimal planning of the transmission and distribution systems, the development of the use of distributed generation (DG) and reduced system’s costs. However, in the past years, this concept has only been developed on the power grid and does not provide an accurate understanding of real energy systems. In real energy systems, different energy carriers and technologies interact, and a real energy system is a collection of these carriers and technologies. Therefore, the models presented for future sustainable energy systems should consider the integration of different energy infrastructure and the interaction of different energy carriers. In this regard, the concept of energy hub, in which the production, conversion, storage, and consumption of different energy carriers are considered in an intelligent framework, can provide a comprehensive model of future smart energy systems (SES). The main purpose of this chapter is to introduce the concept of smart energy hub (SEH). In this regard, an introduction to the concept of the smart grid, its definitions, features, and main challenges are presented. Finally, it discusses the framework of SEHs and their potential role in achieving a comprehensive model of SES in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Noorollahi Y, Yousefi H, Mohammadi M (2016) Multi-criteria decision support system for wind farm site selection using GIS. Sustain Energy Technol Assess 13:38–50. https://doi.org/10.1016/j.seta.2015.11.007

    Google Scholar 

  2. Noorollahi Y, Itoi R, Yousefi H, Mohammadi M, Farhadi A (2017) Modeling for diversifying electricity supply by maximizing renewable energy use in Ebino city southern Japan. Sustain Cities Soc 34:371–384. https://doi.org/10.1016/j.scs.2017.06.022

    Article  Google Scholar 

  3. Hossain M, Madlool N, Rahim N, Selvaraj J, Pandey A, Khan AF (2016) Role of smart grid in renewable energy: an overview. Renew Sustain Energy Rev 60:1168–1184

    Article  Google Scholar 

  4. Güngör VC, Sahin D, Kocak T, Ergüt S, Buccella C, Cecati C, Hancke GP (2011) Smart grid technologies: communication technologies and standards. IEEE Trans Ind Inf 7(4):529–539

    Article  Google Scholar 

  5. Tuballa ML, Abundo ML (2016) A review of the development of smart grid technologies. Renew Sustain Energy Rev 59:710–725

    Article  Google Scholar 

  6. Siano P (2014) Demand response and smart grids—a survey. Renew Sustain Energy Rev 30:461–478

    Article  Google Scholar 

  7. Geidl M, Andersson G (2005) Optimal power dispatch and conversion in systems with multiple energy carriers. In: Proceedings of the 15th power systems computation conference (PSCC). Citeseer

    Google Scholar 

  8. Geidl M, Koeppel G, Favre-Perrod P, Klockl B, Andersson G, Frohlich K (2007) Energy hubs for the future. IEEE Power Energy Mag 5(1):24

    Article  Google Scholar 

  9. Mohammadi M, Noorollahi Y, Mohammadi-Ivatloo B, Yousefi H (2017) Energy hub: from a model to a concept – a review. Renew Sustain Energy Rev 80:1512–1527. https://doi.org/10.1016/j.rser.2017.07.030

    Article  Google Scholar 

  10. Mohammadi M, Noorollahi Y, Mohammadi-Ivatloo B, Yousefi H, Jalilinasrabady S (2017) Optimal Scheduling of Energy Hubs in the Presence of Uncertainty-A Review. J Energy Manag Technol 1(1):1–17. https://doi.org/10.22109/jemt.2017.49432

    Google Scholar 

  11. Geidl M, Andersson G (2005) A modeling and optimization approach for multiple energy carrier power flow. In: 2005 IEEE Russia Power Tech, pp 1–7

    Google Scholar 

  12. Geidl M, Andersson G (2007) Optimal coupling of energy infrastructures. In: 2007 IEEE Lausanne Power Tech, pp 1398–1403

    Google Scholar 

  13. Geidl M, Andersson G (2007) Optimal power flow of multiple energy carriers. IEEE Trans Power Syst 22(1):145–155

    Article  Google Scholar 

  14. Arnold M, Negenborn RR, Andersson G, De Schutter B (2009) Model-based predictive control applied to multi-carrier energy systems. In: 2009 IEEE Power & Energy Society general meeting, PES’09, pp 1–8

    Google Scholar 

  15. Arnold M, Andersson G (2010) Investigating renewable infeed in residential areas applying model predictive control. In: 2010 IEEE Power and Energy Society general meeting, pp 1–8

    Google Scholar 

  16. Rastegar M, Fotuhi-Firuzabad M, Zareipour H (2015) Centralized home energy management in multi-carrier energy frameworks. In: 2015 IEEE 15th international conference on environment and electrical engineering (EEEIC), pp 1562–1566

    Google Scholar 

  17. Arnold M, Andersson G (2008) Decomposed electricity and natural gas optimal power flow. In: 16th power systems computation conference (PSCC 08), Glasgow, Scotland

    Google Scholar 

  18. Arnold M, Negenborn R, Andersson G, De Schutter B (2010) Distributed predictive control for energy hub coordination in coupled electricity and gas networks. In: Intelligent infrastructures. Springer, Dordrecht, pp 235–273

    Chapter  Google Scholar 

  19. Kolokotsa D (2015) The role of smart grids in the building sector. Energy Buildings 116:703

    Article  Google Scholar 

  20. Moretti M, Djomo SN, Azadi H, May K, De Vos K, Van Passel S, Witters N (2016) A systematic review of environmental and economic impacts of smart grids. Renew Sustain Energy Rev 68:888

    Article  Google Scholar 

  21. Sharma K, Saini LM (2015) Performance analysis of smart metering for smart grid: an overview. Renew Sustain Energy Rev 49:720–735

    Article  Google Scholar 

  22. Tan KM, Ramachandaramurthy VK, Yong JY (2016) Integration of electric vehicles in smart grid: a review on vehicle to grid technologies and optimization techniques. Renew Sustain Energy Rev 53:720–732

    Article  Google Scholar 

  23. Mathiesen BV, Lund H, Connolly D, Wenzel H, Østergaard PA, Möller B, Nielsen S, Ridjan I, Karnøe P, Sperling K (2015) Smart energy systems for coherent 100% renewable energy and transport solutions. Appl Energy 145:139–154

    Article  Google Scholar 

  24. Connolly D, Lund H, Mathiesen B (2016) Smart energy Europe: the technical and economic impact of one potential 100% renewable energy scenario for the European Union. Renew Sustain Energy Rev 60:1634–1653

    Article  Google Scholar 

  25. Rivarolo M, Greco A, Massardo A (2013) Thermo-economic optimization of the impact of renewable generators on poly-generation smart-grids including hot thermal storage. Energy Convers Manag 65:75–83

    Article  Google Scholar 

  26. Teimourzadeh Baboli P, Yazdani Damavandi M, Parsa Moghaddam M, Haghifam M (2015) A mixed integer modeling of micro energy-hub system. In: 2015 IEEE Power & Energy Society general meeting, IEEE, pp 1–5

    Google Scholar 

  27. Rastegar M, Fotuhi-Firuzabad M, Lehtonen M (2015) Home load management in a residential energy hub. Electr Power Syst Res 119:322–328

    Article  Google Scholar 

  28. Rastegar M, Fotuhi-Firuzabad M (2015) Load management in a residential energy hub with renewable distributed energy resources. Energy Buildings 107:234–242

    Article  Google Scholar 

  29. Brahman F, Honarmand M, Jadid S (2015) Optimal electrical and thermal energy management of a residential energy hub, integrating demand response and energy storage system. Energy Buildings 90:65–75

    Article  Google Scholar 

  30. Moghaddam IG, Saniei M, Mashhour E (2016) A comprehensive model for self-scheduling an energy hub to supply cooling, heating and electrical demands of a building. Energy 94:157–170

    Article  Google Scholar 

  31. Bozchalui MC, Hashmi SA, Hassen H, Cañizares CA, Bhattacharya K (2012) Optimal operation of residential energy hubs in smart grids. IEEE Trans Smart Grid 3(4):1755–1766

    Article  Google Scholar 

  32. Bozchalui MC, Cañizares CA, Bhattacharya K (2015) Optimal operation of climate control systems of produce storage facilities in smart grids. IEEE Trans Smart Grid 6(1):351–359

    Article  Google Scholar 

  33. Bozchalui MC, Cañizares CA, Bhattacharya K (2015) Optimal energy management of greenhouses in smart grids. IEEE Trans Smart Grid 6(2):827–835

    Article  Google Scholar 

  34. Maroufmashat A, Fowler M, Khavas SS, Elkamel A, Roshandel R, Hajimiragha A (2016) Mixed integer linear programing based approach for optimal planning and operation of a smart urban energy network to support the hydrogen economy. Int J Hydrogen Energy 41:7700

    Article  Google Scholar 

  35. Bahrami S, Sheikhi A (2015) From demand response in smart grid toward integrated demand response in smart energy hub. IEEE Trans Smart Grid 7:650

    Google Scholar 

  36. Sheikhi A, Bahrami S, Ranjbar AM (2015) An autonomous demand response program for electricity and natural gas networks in smart energy hubs. Energy 89:490–499

    Article  Google Scholar 

  37. Sheikhi A, Rayati M, Ranjbar AM (2016) Demand side management for a residential customer in multi energy systems. Sustain Cities Soc 22:63

    Article  Google Scholar 

  38. Neyestani N, Yazdani-Damavandi M, Shafie-Khah M, Chicco G, Catalao JP (2015) Stochastic modeling of multienergy carriers dependencies in smart local networks with distributed energy resources. IEEE Trans Smart Grid 6(4):1748–1762

    Article  Google Scholar 

  39. Fang B, Yin X, Tan Y, Li C, Gao Y, Cao Y, Li J (2016) The contributions of cloud technologies to smart grid. Renew Sustain Energy Rev 59:1326–1331

    Article  Google Scholar 

  40. Sheikhi A, Rayati M, Bahrami S, Ranjbar AM, Sattari S (2015) A cloud computing framework on demand side management game in smart energy hubs. Int J Electr Power Energy Syst 64:1007–1016

    Article  Google Scholar 

  41. Paudyal S, Cañizares CA, Bhattacharya K (2015) Optimal operation of industrial energy hubs in smart grids. IEEE Trans Smart Grid 6(2):684–694

    Article  Google Scholar 

  42. Krause T, Kienzle F, Liu Y, Andersson G (2011) Modeling interconnected national energy systems using an energy hub approach. In: 2011 IEEE Trondheim PowerTech, pp 1–7

    Google Scholar 

  43. Moeini-Aghtaie M, Abbaspour A, Fotuhi-Firuzabad M, Hajipour E (2014) A decomposed solution to multiple-energy carriers optimal power flow. IEEE Trans Power Syst 29(2):707–716

    Article  Google Scholar 

  44. Moeini-Aghtaie M, Dehghanian P, Fotuhi-Firuzabad M, Abbaspour A (2014) Multiagent genetic algorithm: an online probabilistic view on economic dispatch of energy hubs constrained by wind availability. IEEE Trans Sustain Energy 5(2):699–708

    Article  Google Scholar 

  45. Maroufmashat A, Elkamel A, Fowler M, Sattari S, Roshandel R, Hajimiragha A, Walker S, Entchev E (2015) Modeling and optimization of a network of energy hubs to improve economic and emission considerations. Energy 93:2546–2558

    Article  Google Scholar 

  46. Orehounig K, Evins R, Dorer V (2015) Integration of decentralized energy systems in neighbourhoods using the energy hub approach. Appl Energy 154:277–289

    Article  Google Scholar 

  47. Salimi M, Ghasemi H, Adelpour M, Vaez-ZAdeh S (2015) Optimal planning of energy hubs in interconnected energy systems: a case study for natural gas and electricity. IET Gener Transm Distrib 9(8):695–707

    Article  Google Scholar 

  48. Shabanpour-Haghighi A, Seifi AR (2015) Energy flow optimization in multicarrier systems. IEEE Trans Ind Inf 11(5):1067–1077

    Article  Google Scholar 

  49. Yang H, Xiong T, Qiu J, Qiu D, Dong ZY (2016) Optimal operation of DES/CCHP based regional multi-energy prosumer with demand response. Appl Energy 167:353

    Article  Google Scholar 

  50. Zhang X, Shahidehpour M, Alabdulwahab A, Abusorrah A (2015) Optimal expansion planning of energy hub with multiple energy infrastructures. IEEE Trans Smart Grid 6(5):2302–2311

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Younes Noorollahi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mohammadi, M., Noorollahi, Y., Mohammadi-Ivatloo, B. (2018). An Introduction to Smart Energy Systems and Definition of Smart Energy Hubs. In: Mohammadi-Ivatloo, B., Jabari, F. (eds) Operation, Planning, and Analysis of Energy Storage Systems in Smart Energy Hubs. Springer, Cham. https://doi.org/10.1007/978-3-319-75097-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-75097-2_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-75096-5

  • Online ISBN: 978-3-319-75097-2

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics