Skip to main content

Abiotic Stress Response in Plants: The Relevance of Tocopherols

  • Chapter
  • First Online:
Antioxidants and Antioxidant Enzymes in Higher Plants

Abstract

In the natural environment, plants are continuously exposed to a variety of abiotic stresses yielding higher concentrations of reactive oxygen species (ROS), which may cause strong oxidation of cellular structures. To cope with oxidative stress plants have evolved very efficient antioxidant machinery, among which, lipophilic tocopherols represent an important nonenzymatic component. Tocopherol exists in four isomeric forms (α-, β-, γ-, δ-) and its composition depends on plant genotypic features and tissue type. It plays a crucial role together with other antioxidants (e.g., ascorbic acid, carotenoids, glutathione) in detoxifying ROS that emerge during stress conditions. As a component of thylakoid membranes, tocopherol acts as an important scavenger of singlet oxygen and other ROS thereby preventing lipid peroxidation and maintaining stable redox status in plant cells. In addition, tocopherols may protect the embryo from ROS during germination, under both aging and stress conditions. In this chapter, the role of tocopherols in the regulation of abiotic stress responses in plants will be emphasized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abd El-Baky HH, El Baz FK, El-Baroty GS (2009) Enhancement of antioxidant production in Spirulina platensis under oxidative stress. Acta Physiol Plant 31:623–631

    Article  CAS  Google Scholar 

  • Abbasi A, Hajirezaei M, Hofius D, Sonnewald U, Voll LM (2007) Specific roles of α- and γ-tocopherol in abiotic stress responses of transgenic tobacco. Plant Physiol 143:1720–1738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Abbasi AR, Saur A, Hennig P, Tschiersch H, Hajirezaei M, Hofius D, Sonnewald U, Voll LM (2009) Tocopherol deficiency in transgenic tobacco (Nicotiana tabacum L.) plants leads to accelerated senescence. Plant, Cell Environ 32:144–157

    Article  CAS  Google Scholar 

  • Ali RM, Mahmoud MH, Abbas HM, Fakhr M (2017) Physiological studies on the interactive effects of lead and antioxidants on Carum carvi plant. Egypt J Bot 57:317–333

    Article  Google Scholar 

  • Arora A, Sairam RK, Srivastava GC (2002) Oxidative stress and antioxidative system in plants. Curr Sci 82:1227–1238

    CAS  Google Scholar 

  • Asada K (2006) Production and scavenging of reactive oxygen species in chloroplasts and their functions. Plant Physiol 141:391–396

    Google Scholar 

  • Awasthi R, Bhandari K, Nayyar, H (2015) Temperature stress and redox homeostasis in agricultural crops. Front Environ Sci 3:1–24

    Google Scholar 

  • Backasch N, Schulz-Friedrich R, Appel J (2005) Influences on tocopherol biosynthesis in the cyanobacterium Synechocystis sp. PCC 6803. J Plant Physiol 162:758–766

    Article  CAS  PubMed  Google Scholar 

  • Bergmüller E, Porfirova S, Dörmann P (2003) Characterization of an Arabidopsis mutant deficient in γ-tocopherol methyltransferase. Plant Mol Biol 52:1181–1190

    Article  PubMed  Google Scholar 

  • Britz SJ, Kremer DF, Kenworthy WJ (2008) Tocopherols in soybean seeds: genetic variation and environmental effects in field-grown crops. J Am Oil Chem Soc 85:931–936

    Article  CAS  Google Scholar 

  • Burčová Z, Kreps F, Schmidt Š, Jablonský M, Ház A, Sládková A, Šurina I (2017) Composition of fatty acids and tocopherols in peels, seeds and leaves of Sea buckthorn. Acta Chim Slov 10:29–34

    Google Scholar 

  • Burtin P (2003) Nutritional value of seaweeds. Electron J Environ Agric Food Chem 2:498–503

    Google Scholar 

  • Caverzan A, Casassola A, Patussi Brammer S (2016) Reactive oxygen species and antioxidant enzymes involved in plant tolerance to stress. In: Shanker AK, Shanker C (eds) Abiotic and biotic stress in plants—recent advances and future perspectives. InTech, Rejska, pp 463–480

    Google Scholar 

  • Chaudhary N, Khurana P (2009) Vitamin E biosynthesis genes in rice: molecular characterization, expression profiling and comparative phylogenetic analysis. Plant Sci 177:479–491

    Article  CAS  Google Scholar 

  • Cheng Z, Sattler S, Maeda H, Sakuragi Y, Bryant DA, DellaPenna D (2003) Highly divergent methyltransferases catalyze a conserved reaction in tocopherol and plastoquinone synthesis in Cyanobacteria and photosynthetic eukaryotes. Plant Cell 15:2343–2356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chennupati P, Seguin P, Liu W (2011) Effects of high temperature stress at different development stages on soybean isoflavone and tocopherol concentrations. J Agric Food Chem 59:13081–13088

    Article  CAS  PubMed  Google Scholar 

  • Ching LS, Mohamed S (2001) Alpha-Tocopherol content in 62 edible tropical plants. J Agric Food Chem 49:3101–3105

    Article  CAS  PubMed  Google Scholar 

  • Choudhury FK, Rivero RM, Blumwald E, Mittler R (2016) Reactive oxygen species, abiotic stress and stress combination. Plant J 90:856–867

    Article  PubMed  CAS  Google Scholar 

  • Collakova E, DellaPenna D (2001) Isolation and functional analysis of homogentisate phytyltransferase from Synechocystis sp. PCC 6803 and Arabidopsis. Plant Physiol 127:1113–1124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Collakova E, DellaPenna D (2003a) Homogentisate phytyltransferase activity is limiting for tocopherol biosynthesis in Arabidopsis. Plant Physiol 131:632–642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Collakova E, DellaPenna D (2003b) The role of homogentisate phytyltransferase and other tocopherol pathway enzymes in the regulation of tocopherol synthesis during abiotic stress. Plant Physiol 133:930–940

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Collin VC, Eymery F, Genty B, Rey P, Havaux M (2008) Vitamin E is essential for the tolerance of Arabidopsis thaliana to metal-induced oxidative stress. Plant, Cell Environ 31:244–257

    CAS  Google Scholar 

  • Das K, Roychoudhury A (2014) Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. Front Environ Sci 2:53

    Article  Google Scholar 

  • DellaPenna D (2005) A decade of progress in understanding vitamin E synthesis in plants. J Plant Physiol 162:729–737

    Article  CAS  PubMed  Google Scholar 

  • DellaPenna D, Pogson BJ (2006) Vitamin synthesis in plants: tocopherols and carotenoids. Annu Rev Plant Biol 57:711–738

    Article  CAS  PubMed  Google Scholar 

  • Dłużewska J, Szymańska R, Gabruk M, Kós PB, Nowicka B, Kruk J (2016) Tocopherol cyclases-substrate specificity and phylogenetic relations. PLoS ONE 11:e0159629

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dong G, Liu X, Chen Z, Pan W, Li H, She L (2007) The dynamics of tocopherol and the effect of high temperature in developing sunflower (Helianthus annuus L.) embryo. Food Chem 102:138–145

    Article  CAS  Google Scholar 

  • Espinoza A, San Martín A, López-Climent M, Ruiz-Lara S, Gómez-Cadenas A, Casaretto JA (2013) Engineered drought-induced biosynthesis of α-tocopherol alleviates stress-induced leaf damage in tobacco. J Plant Physiol 170:1285–1294

    Article  CAS  PubMed  Google Scholar 

  • Fahad S, Hussain S, Saud S, Hassan S, Ihsan Z, Shah AN, Wu C, Yousaf M, Nasim W, Alharby H, Alghabari F, Huang J (2016a) Exogenously applied plant growth regulators enhance the morpho-physiological growth and yield of rice under high temperature. Front Plant Sci 7:1250

    Article  PubMed  PubMed Central  Google Scholar 

  • Fahad S, Hussain S, Saud S, Khan F, Hassan S, Amanullah Nasim W, Arif M, Wang F Huang J (2016b) Exogenously applied plant growth regulators affect heat-stressed rice pollens. J Agro Crop Sci 202:139–150

    Google Scholar 

  • Farouk S (2011) Ascorbic acid and α-tocopherol minimize saltinduced wheat leaf senescence. J Stress Physiol Biochem 7:58–79

    Google Scholar 

  • Fukuzawa K, Tokumura A, Ouchi S, Tsukatani H (1982) Antioxidant activities of tocopherols on Fe2+-ascobate-induced lipid-peroxidation in lecithin liposomes. Lipids 17:511–513

    Article  CAS  PubMed  Google Scholar 

  • Gajewska E, Skłodowska M (2007) Relations between tocopherol, chlorophyll and lipid peroxides contents in shoots of Ni-treated wheat. J Plant Physiol 164:364–366

    Article  CAS  PubMed  Google Scholar 

  • Gosset DR, Millhollon EP, Lucas MC (1994) Antioxidant response to NaCl stress in salt-tolerant and salt-sensitive cultivars of cotton. Crop Sci 34:706–714

    Article  Google Scholar 

  • Grusak MA, DellaPenna D (1999) Improving the nutrient composition of plants to enhance human nutrition and health. Annu Rev Plant Physiol Plant Mol Biol 50:133–161

    Article  CAS  PubMed  Google Scholar 

  • Gu J, Liu G-S, Guo J, Zhang J (2008) Effects of Vitamin E on the activities of protective enzymes and membrane lipid peroxidation in Leymus chinensis under drought stress. Chem Res Chinese Univ 24:80–83

    Article  CAS  Google Scholar 

  • Hasanuzzaman M, Nahar K, Fujita M (2014) Role of tocopherol (vitamin E) in plants; abiotic stress tolerance and beyond. In: Ahmad P, Rasool S (eds) Emerging technologies and management of crop stress tolerance, vol II. A sustainable approach. Academic Press, USA, pp 267–290

    Chapter  Google Scholar 

  • Havaux M, Eymery F, Porfirova S, Rey P, Dörmann P (2005) Vitamin E protects against photoinhibition and photooxidative stress in Arabidopsis thaliana. Plant Cell 17:3451–3469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hédiji H, Djebali W, Cabasson C, Maucourt M, Baldet P, Bertrand A, Zoghlami LB, Deborde C, Moing A, Brouquisse R, Chaïbi W, Gallusci P (2010) Effects of long-term cadmium exposure on growth and metabolomics profile of tomato plants. Ecotoxicol Environ Safe 73:1965–1974

    Article  CAS  Google Scholar 

  • Hörtensteiner S (2006) Chlorophyll degradation during senescence. Annu Rev Plant Biol 57:55–77

    Article  PubMed  CAS  Google Scholar 

  • Inoue S, Ejima K, Iwai E, Hayashi H, Appel J, Tyystjärvi E, Murata N, Nishiyama Y (2011) Protection by α-tocopherol of the repair of photosystem II during photoinhibition in Synechocystis sp. PCC 6803. Biochim Biophys Acta 1807:236–241

    Article  CAS  PubMed  Google Scholar 

  • Ischebeck T, Zbierzak AM, Kanwischer M, Dörmann P (2006) A salvage pathway for phytol metabolism in Arabidopsis. J Biol Chem 281:2470–2477

    Article  CAS  PubMed  Google Scholar 

  • Ivanov BN, Khorobrykh S (2003) Participation of photosynthetic electron transport in production and scavenging of reactive oxygen species. Antiox Redox Signal 5:43–53

    Article  CAS  Google Scholar 

  • Jin S, Daniell H (2014) Expression of γ-tocopherol methyltransferase in chloroplasts results in massive proliferation of the inner envelope membrane and decreases susceptibility to salt and metal-induced oxidative stress by reducing reactive oxygen species. Plant Biotechnol J 12:1274–1285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jaleel CA, Gopi R, Manivannan P, Gomathinayagam M, Sridharan R, Panneerselvam R (2008) Antioxidant potential and indole alkaloid profile variations with water deficits along different parts of two varieties of Catharanthus roseus. Colloids Surf B Biointerfaces 62:312–318

    Article  CAS  PubMed  Google Scholar 

  • Ji CY, Kim YH, Kim HS, Ke Q, Kim GW, Park SC, Lee HS, Jeong JC, Kwak SS (2016) Molecular characterization of tocopherol biosynthetic genes in sweetpotato that respond to stress and activate the tocopherol production in tobacco. Plant Physiol Biochem 106:118–128

    Article  CAS  PubMed  Google Scholar 

  • Kanayama Y, Sato K, Ikeda H, Tamura T, Nishiyama M, Kanahama K (2013) Seasonal changes in abiotic stress tolerance and concentrations of tocopherol, sugar, and ascorbic acid in sea buckthorn leaves and stems. Sci Hortic 164:232–237

    Article  CAS  Google Scholar 

  • Kanwischer M, Porfirova S, Bergmuller E, Dörmann P (2005) Alterations in tocopherol cyclase activity in transgenic and mutant plants of Arabidopsis affect tocopherol content, tocopherol composition, and oxidative stress. Plant Physiol 137:713–723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kostopoulou Z, Therios I, Molassiotis A (2014) Resveratrol and its combination with α-tocopherol mediate salt adaptation in citrus seedlings. Plant Physiol Biochem 78:1–9

    Article  CAS  PubMed  Google Scholar 

  • Krause GH, Gallé A, Virgo A, Garcia M, Bucic P, Jahns P, Winter K (2006) High-light stress does not impair growth and biomass production of sun-acclimated tropical tree seedlings (Calophyllum longifolium Wild. and Tectona grandis L.f.). Plant Biol 8:31–41

    Article  CAS  PubMed  Google Scholar 

  • Krause GH, Winter K, Matsubara S, Krause B, Jahns P, Virgo A, Aranda J, Garcia M (2012) Photosynthesis, photoprotection, and growth of shade-tolerant tropical tree seedlings under full sunlight. Photosynth Res 113:273–285

    Article  CAS  PubMed  Google Scholar 

  • Kruk J, Szymańska R, Krupinska K (2008) Tocopherol quinone content of green algae and higher plants revised by a new high-sensitive fluorescence detection method using HPLC–Effects of high light stress and senescence. J Plant Physiol 165:1238–1247

    Article  CAS  PubMed  Google Scholar 

  • Kumar D, Yusuf MA, Singh P, Sardar M, Sarin NB (2013a) Modulation of antioxidant machinery in α-tocopherol-enriched transgenic Brassica juncea plants tolerant to abiotic stress conditions. Protoplasma 250:1079–1089

    Article  CAS  PubMed  Google Scholar 

  • Kumar S, Singh R, Nayyar H (2013b) α-Tocopherol application modulates the response of wheat (Triticum aestivum) seedlings to elevated temperatures by mitigation of stress injury and enhancement of antioxidants. J Plant Growth Regul 32:307–314

    Article  CAS  Google Scholar 

  • Leipner J, Fracheboud Y, Stamp P (1997) Acclimation by suboptimal growth temperature diminishes photooxidative damage in maize leaves. Plant, Cell Environ 20:366–372

    Article  CAS  Google Scholar 

  • Leipner J, Stamp P, Frachebound Y (2000) Artificially increased ascorbate content affects zeaxanthin formation but not thermal energy dissipation or degradation of antioxidants during cold-induced photooxidative stress in maize leaves. Planta 210:964–969

    Google Scholar 

  • Le Tutour B, Benslimane F, Gouleau MP, Gouygou JP, Saadan B, Quemeneu F (1998) Antioxidant and pro-oxidant activities of the brown algae, Laminaria digitata, Himanthaliaelongata, Fucus vesiculosus, Fucus serratus and Ascophyllum nodosum. J Appl Phycol 10:121–129

    Article  Google Scholar 

  • Leya T, Rahn A, Lütz C, Remias D (2009) Response of arctic snow and permafrost algae to high light and nitrogen stress by changes in pigment composition and applied aspects for biotechnology. FEMS Microbiol Ecol 67:432–443

    Article  CAS  PubMed  Google Scholar 

  • Liebler DC, Kling DS, Reed DJ (1986) Antioxidant protection of phospholipid bilayers by alpha-tocopherol. Control of α-tocopherol status and lipid peroxidation by ascorbic acid and glutathione. J Biol Chem 261:12114–12119

    CAS  PubMed  Google Scholar 

  • Liu X, Hua X, Guo J, Qi D, Wang L, Liu Z, Jin Z, Chen S, Liu G (2008) Enhanced tolerance to drought stress in transgenic tobacco plants overexpressing VTE1 for increased tocopherol production from Arabidopsis thaliana. Biotechnol Lett 30:1275–1280

    Article  CAS  PubMed  Google Scholar 

  • Luis P, Behnke K, Toepel J, Wilhelm C (2006) Parallel analysis of transcript levels and physiological key parameters allows the identification of stress phase gene markers in Chlamydomonas reinhardtii under copper excess. Plant, Cell Environ 29:2043–2054

    Article  CAS  Google Scholar 

  • Lushchak VI, Semchuk NM (2012) Tocopherol biosynthesis: chemistry, regulation and effects of environmental factors. Acta Physiol Plant 34:1607–1628

    Article  CAS  Google Scholar 

  • Maeda H, Sakuragi Y, Bryant DA, DellaPenna D (2005) Tocopherols protect Synechocystis sp. Strain PCC 6803 from lipid peroxidation. Plant Physiol 138:1422–1435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maeda H, Song W, Sage TL, DellaPenna D (2006) Tocopherols play a crucial role in low-temperature adaptation and phloem loading in Arabidopsis. Plant Cell 18:2710–2732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maeda H, Sage TL, Isaac G, Welti R, DellaPenna D (2008) Tocopherols modulate extraplastidic polyunsaturated fatty acid metabolism in Arabidopsis at low temperature. Plant Cell 20:452–470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marquard D, Williams JA, Kučerka N, Atkinson J, Wassall SR, Katsaras J, Harroun TA (2013) Tocopherol activity correlates with its location in a membrane: a new perspective on the antioxidant vitamin E. J Am Chem Soc 135:7523–7533

    Article  CAS  Google Scholar 

  • Matringe M, Ksas B, Rey P, Havaux M (2008) Tocotrienols, the unsaturated forms of vitamin E, can function as antioxidants and lipid protectors in tobacco leaves. Plant Physiol 147:764–778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mene-Saffrane L, Jones AD, Dellapenna D (2010) Plastochromanol-8 and tocopherols are essential lipidsoluble antioxidants during seed desiccation and quiescence in Arabidopsis. Proc Natl Acad Sci USA 107:17815–17820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miller G, Shulaev V, Mittler R (2008) Reactive oxygen signaling and abiotic stress. Physiol Plant 133:481–489

    Article  CAS  PubMed  Google Scholar 

  • Mittler R (2017) ROS are good. Trend Plant Sci 22:11–19

    Article  CAS  Google Scholar 

  • Mittler R, Vanderauwera S, Suzuki N, Miller G, Tognetti VB, Vandepoele K, Gollery M, Shulaev V, Van Breusegem F (2011) ROS signaling: the new wave? Trend Plant Sci 16:300–309

    Article  CAS  Google Scholar 

  • Mohamed R, Pineda M, Aguilar M (2005) Antioxidant capacity of extracts from wild and crop plants of the Mediterranean region. J Food Sci 72:S059–S063

    Google Scholar 

  • Mokrosnop VM (2014) Functions of tocopherols in the cells of plants and other photosynthetic organisms. Ukr Biochem J 86:26–36

    Article  CAS  PubMed  Google Scholar 

  • Morales P, Carvalho AM, Sánchez-Mata MC, Cámara M, Molina M, Ferreira CFRI (2012) Tocopherol composition and antioxidant activity of Spanish wild vegetables. Genet Resour Crop Evol 59:851–863

    Google Scholar 

  • Munné-Bosch S, Alegre L (2000) Changes in carotenoids, tocopherols and diterpenes during drought and recovery, and the biological significance of chlorophyll loss in Rosmarinus offcinalis plants. Planta 210:925–931

    Article  PubMed  Google Scholar 

  • Munné-Bosch S, Alegre L (2002) The function of tocopherols and tocotrienols in plants. Crit Rev Plant Sci 21:31–57

    Article  Google Scholar 

  • Munné-Bosch S, Penuelas J (2003) Photo- and antioxidative protection, and a role for salicylic acid during drought and recovery in field-grown Phillyrea angustifolia plants. Planta 217:758–766

    Article  PubMed  CAS  Google Scholar 

  • Munné-Bosch S (2005) Linking tocopherols with cellular signaling in plants. New Phytol 166:363–366

    Article  PubMed  Google Scholar 

  • Munné-Bosch S, Falara V, Pateraki I, López-Carbonella M, Cela J, Kanellis AK (2009) Physiological and molecular responses of the isoprenoid biosynthetic pathway in a drought-resistant Mediterranean shrub, Cistus creticus exposed to water deficit. J Plant Physiol 166:136–145

    Article  PubMed  CAS  Google Scholar 

  • Müller M, Munné-Bosch S (2015) Ethylene response factors: a key regulatory hub in hormone and stress signaling. Plant Physiol 169:32–41

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Niinemets U (2007) Photosynthesis and resource distribution through plant canopies. Plant, Cell Environ 30:1052–1071

    Article  CAS  Google Scholar 

  • Norris SR, Shen X, DellaPenna D (1998) Complementation of the Arabidopsis pds1 mutation with the gene encoding p-hydroxyphenylpyruvate dioxygenase. Plant Physiol 117:1317–1323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nowicka B, Kruk J (2016) Cyanobacteria use both p-hydroxybenozate and homogentisate as a precursor of plastoquinone head group. Acta Physiol Plant 38:49

    Article  CAS  Google Scholar 

  • Ogbonna JC (2009) Microbiological production of tocopherols: current state and prospects. Appl Microbiol Biotechnol 84:217–225

    Article  CAS  PubMed  Google Scholar 

  • Oh M-M, Carey EE, Rajashekar CB (2009) Environmental stresses induce health-promoting phytochemicals in lettuce. Plant Physiol Biochem 47:578–583

    Article  CAS  PubMed  Google Scholar 

  • Oliván A, Munné-Bosch S (2010) Diurnal patterns of α-tocopherol accumulation in Mediterranean plants. J Arid Environ 74:1572–1576

    Article  Google Scholar 

  • Orabi SA, Abdelhamid MT (2016) Protective role of a-tocopherol on two Vicia faba cultivars against seawater-induced lipid peroxidation by enhancing capacity of anti-oxidative system. J Saudi Soc Agric Sci 15:145–154

    Google Scholar 

  • Ortiz J, Romero N, Robert P, Araya J, Lopez-Hernández J, Bozzo C, Navarrete E, Osorio A, Riosa A (2006) Dietary fiber, amino acid, fatty acid and tocopherol contents of the edible seaweeds Ulva lactuca and Durvillaea antarctica. Food Chem 99:98–104

    Article  CAS  Google Scholar 

  • Ouyang SQ, He SJ, Liu P, Zhang WK, Zhang JS, Chen SY (2011) The role of tocopherol cyclase in salt stress tolerance of rice (Oryza sativa). Sci China 54:181–188

    Article  CAS  Google Scholar 

  • Panayotova V, Stancheva M, Dobreva D (2013) Alpha-tocopherol and ergocalciferol contents of some macroalgae from Bulgarian Black Sea coast. Ovid Univ Ann Chem 24:13–16

    CAS  Google Scholar 

  • Porfirova S, Bergmuller E, Tropf S, Lemke R, Dörmann P (2002) Isolation of an Arabidopsis mutant lacking vitamin E and identification of a cyclase essential for all tocopherol biosynthesis. Proc Natl Acad Sci USA 99:12495–12500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rady Mostafa M, Sadak Mervat S, El-Lethy Safaa R, Abd Elhamid Ebtihal M, Abdelhamid Magdi T (2015) Exogenous α-tocopherol has a beneficial effect on Glycine max (L.) plants irrigated with diluted sea water. J Hortic Sci Biotechnol 90:195–202

    Article  Google Scholar 

  • Raiola A, Tenore GC, Barone A, Frusciante L, Rigano MM (2015) Vitamin E content and composition in tomato fruits: beneficial roles and bio-fortification. Int J Mol Sci 16:29250–29264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rastogi A, Yadav DK, Szymańska R, Kruk J, Sedlářová M, Pospíšil P (2014) Singlet oxygen scavenging activity of tocopherol and plastochromanol in Arabidopsis thaliana: relevance to photooxidative stress. Plant, Cell Environ 37:392–401

    Article  CAS  Google Scholar 

  • Sage TL, Bagha S, Lundsgaard-Nielsen V, Branch HA, Sultmanis S, Sage RF (2015) The effect of high temperature stress on male and female reproduction in plants. Field Crops Res 182:30–42

    Article  Google Scholar 

  • Sadiq M, Akram NA, Javed MT (2016) Alpha-tocopherol alters endogenous oxidative defense system in mung bean plants under water-deficit conditions. Pak J Bot 48:2177–2182

    CAS  Google Scholar 

  • Sakuragi Y, Maeda H, DellaPenna D, Bryant DA (2006) a-Tocopherol plays a role in photosynthesis and macronutrient homeostasis of the cyanobacterium Synechocystis sp. PCC 6803 that is independent of its antioxidant function. Plant Physiol 141:508–521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sandorf I, Hollander-Czytko H (2002) Jasmonate is involved in the induction of tyrosineaminotransferase and tocopherol biosynthesis in Arabidopsis thaliana. Planta 216:173–179

    Article  CAS  PubMed  Google Scholar 

  • Sattler SE, Cahoon EB, Coughlan SJ, DellaPenna D (2003) Characterization of tocopherol cyclases from higher plants and cyanobacteria: evolutionary implications for tocopherol synthesis and function. Plant Physiol 132:2184–2195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Savidge B, Weiss JD, Wong Y-HH, Lassner MW, Mitsky TA, Shewmaker CK, Post-Beittenmiller D, Valentin HE (2002) Isolation and characterization of homogentisate phytyltransferase genes from Synechocystis sp. PCC 6803 and Arabidopsis. Plant Physiol 129:321–332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Semchuk NM, Lushchak OV, Falk J, Krupinska K, Lushchak VI (2009) Inactivation of genes, encoding tocopherol biosynthetic pathway enzymes, results in oxidative stress in outdoor grown Arabidopsis thaliana. Plant Physiol Biochem 47:384–390

    Article  CAS  PubMed  Google Scholar 

  • Semida WM, Taha RS, Abdelhamid MT, Rady MM (2014) Foliar-applied α-tocopherol enhances salt-tolerance in Vicia faba L. plants grown under saline conditions. S Afr J Bot 95:24–31

    Article  CAS  Google Scholar 

  • Shammugasam B, Ramakrishnan Y, Ghazali HM, Muhammad K (2014) Tocopherol and tocotrienol contents of different varieties of rice in Malaysia. J Sci Food Agric 95:672–678

    Article  CAS  Google Scholar 

  • Şeker ME, Çelik A, Dost K (2012) Determination of vitamin E isomers of grape seeds by high-performance liquid chromatography—UV detection. J Chromatogr Sci 50:97–101

    Article  PubMed  CAS  Google Scholar 

  • Sharma P, Jha AB, Dubey RS, Pessarakli M (2012) Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J Bot Article ID:217037

    Google Scholar 

  • Shintani D, DellaPenna D (1998) Elevating the vitamin E content of plants through metabolic engineering. Science 282:2098–2100

    Article  CAS  PubMed  Google Scholar 

  • Sirhindi G, Sharma P, Singh A, Kaur H, Mir M (2015) Alteration in photosynthetic pigments, osmolytes and antioxidants in imparting copper stress tolerance by exogenous jasmonic acid treatment in Cajanus cajan. Int J Plant Physiol Biochem 7:3039

    Google Scholar 

  • Sirikhachornkit A, Shin JW, Baroli I, Niyogi KK (2009) Replacement of alpha-tocopherol by beta-tocopherol enhances resistance to photooxidative stress in a xanthophyll-deficient strain of Chlamydomonas reinhardtii. Eukaryot Cell 8:1648–1657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Skłodowska M, Gapińska M, Gajewska E, Gabara B (2009) Tocopherol content and enzymatic antioxidant activitiesin chloroplasts from NaCl-stressed tomato plants. Acta Physiol Plant 31:393–400

    Article  CAS  Google Scholar 

  • Spicher L, Glauser G, Kessler F (2016) Lipid antioxidant and galactolipid remodeling under temperature stress in tomato plants. Front Plant Sci 7:167

    Article  PubMed  PubMed Central  Google Scholar 

  • Streb P, Shang W, Feierabend J (1999) Resistance of cold-hardened winter rye leaves (Secale cereale L.) to photo-oxidative stress. Plant, Cell Environ 22:1225–1237

    Article  CAS  Google Scholar 

  • Szymańska R, Kruk J (2008) Tocopherol content and isomers’ composition in selected plant species. Plant Physiol Biochem 46:29–33

    Article  PubMed  CAS  Google Scholar 

  • Szymańska R, Kruk J (2010) Plastoquinol is the main prenyllipid synthesized during acclimation to high light conditions in Arabidopsis and is converted to plastochromanol by tocopherol cyclase. Plant Cell Physiol 51:537–545

    Google Scholar 

  • Tanaka R, Oster U, Kruse E, Rudiger W, Grimm B (1999) Reduced activity of geranylgeranyl reductase leads to loss of chlorophyll and tocopherol and to partially geranylgeranylated chlorophyll in transgenic tobacco plants expressing antisense RNA for geranylgeranyl reductase. Plant Physiol 120:695–704

    Google Scholar 

  • Tang YL, Ren WW, Zhang L, Tang KX (2011) Molecular cloning and characterization of a tocopherol cyclase gene from Lactuca sativa (Asteraceae). Genet Mol Res 10:693–702

    Google Scholar 

  • Tani Y, Tsumura H (1989) Screening for tocopherol-producing microorganisms and α-tocopherol production by Euglena gracilis Z. Agric Biol Chem 53:305–312

    CAS  Google Scholar 

  • Tarchoune I, Sgherri C, Baâtour O, Izzo R, Lachaâl M, Navari-Izzo F, Ouerghi Z (2013) Effects of oxidative stress caused by NaCl or Na2SO4 excess on lipoic acid and tocopherols in Genovese and Fine basil (Ocimum basilicum). Ann Appl Biol 163:23–32

    Article  CAS  Google Scholar 

  • Traber MG, Atkinson J (2007) Vitamin E, antioxidant and nothing more. Free Radic Biol Med 43:4–15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trebst A, Depka B, Höllander-Czytko H (2002) A specific role for tocopherol and of chemical singlet oxygen quenchers in the maintenance of photosystem II structure and function in Chlamydomonas reinhardtii. FEBS Lett 516:156–160

    Article  CAS  PubMed  Google Scholar 

  • Tsegaye Y, Shintani DK, DellaPenna D (2002) Overexpression of the enzyme p hydroxyphenolpyruvate dioxygenase in Arabidopsis and its relation to tocopherol biosynthesis. Plant Physiol Biochem 40:913–920

    Article  CAS  Google Scholar 

  • Valentin HE, Lincoln K, Moshiri F, Jensen PK, Qi Q, Venkatesh TV, Karunanandaa B, Baszis SR, Norris SR, Savidge B, Gruys KJ, Last RL (2006) The Arabidopsis vitamin E pathway gene5-1 mutant reveals a critical role for phytol kinase in seed tocopherol biosynthesis. Plant Cell 18:212–224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van Eenennaam AL, Lincoln K, Durrett TP, Valentin HE, Shewmaker CK, Thorne GM, Jiang J, Baszis SR, Levering CK, Aasen ED, Hao M, Stein JC, Norris SR, Last RL (2003) Engineering vitamin E content: from Arabidopsis mutant to soy oil. Plant Cell 15:3007–3019

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Verma S, Nizam S, Verma PK (2013) Biotic and abiotic stress signaling in plants. In: Sarwat M, Ahmad A, Abdin MZ (eds) Stress signaling in plants: genomics and proteomics perspective. Springer, New York, USA, pp 25–49

    Chapter  Google Scholar 

  • Vidi PA, Kanwischer M, Baginsky S, Austin JR, Csucs G, Dörmann P, Kessler F, Bréhélin C (2006) Tocopherolcyclase (VTE1) localization and vitamin E accumulation in chloroplast plastoglobule lipoprotein particles. J Biol Chem 281:11225–11234

    Article  CAS  PubMed  Google Scholar 

  • Vom Dorp K, Hölzl G, Plohmann C, Eisenhut M, Abraham M, Weber APM, Hanson AD, Dörmann P (2015) Remobilization of phytol from chlorophyll degradation is essential for tocopherol synthesis and growth of Arabidopsis. Plant Cell 27:284–659

    Google Scholar 

  • Wang D, Wang Y, Long W, Niu M, Zhao Z, Teng X, Zhu X, Zhu J, Hao Y, Wang Y, Liu Y, Jiang L, Wang Y, Wan J (2017) SGD1, a key enzyme in tocopherol biosynthesis, is essential for plant development and cold tolerance in rice. Plant Sci 260:90–100

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, Yin C, Li W, Xu X (2008) Tocopherol is essential for acquired chill-light tolerance in the cyanobacterium Synechocystis sp. strain PCC 6803. J Bacteriol 190:1554–1560

    Article  CAS  PubMed  Google Scholar 

  • Ye YR, Wang WL, Zheng CS, Fu DJ, Liu HW, Shen X (2017) Foliar-application of α-tocopherol enhanced salt tolerance of Carex leucochlora. Biol Plant 61:565–570

    Article  CAS  Google Scholar 

  • Yusuf MA, Kumar D, Rajwanshi R, Strasser RJ, Tsimilli-Michael M, Sarin NB (2010) Overexpression of gamma-tocopherol methyl transferase gene in transgenic Brassica juncea plants alleviates abiotic stress: physiological and chlorophyll fluorescence measurements. Biochim Biophys Acta 1797:1428–1438

    Article  CAS  PubMed  Google Scholar 

  • Zbierzak AM, Kanwischer M, Wille C, Vidi PA, Giavalisco P, Lohmann A, Briesen I, Porfirova S, Brehelin C, Kessler F, Dormann P (2009) Intersection of the tocopherol and plastoquinol metabolic pathways at the plastoglobule. Biochem J 425:389–399

    Article  PubMed  CAS  Google Scholar 

  • Zengin FK, Munzuroglu O (2005) Effects of some heavy metals on content of chlorophyll, proline and some antioxidant chemicals in bean (Phaseolus vulgaris L.) seedlings. Acta Biol Cracov Bot 47:157–164

    Google Scholar 

  • Zigg JM (2015) Vitamin E: a role in signal transduction. Ann Rev Nutr 35:135–173

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivna Štolfa Čamagajevac .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Štolfa Čamagajevac, I., Žuna Pfeiffer, T., Špoljarić Maronić, D. (2018). Abiotic Stress Response in Plants: The Relevance of Tocopherols. In: Gupta, D., Palma, J., Corpas, F. (eds) Antioxidants and Antioxidant Enzymes in Higher Plants. Springer, Cham. https://doi.org/10.1007/978-3-319-75088-0_11

Download citation

Publish with us

Policies and ethics