Skip to main content

Critical States Distance Filter Based Approach for Detection and Blockage of Cyberattacks in Industrial Control Systems

  • Chapter
  • First Online:
Diagnosability, Security and Safety of Hybrid Dynamic and Cyber-Physical Systems

Abstract

Industrial Control Systems (ICS) are integrated in many areas and critical infrastructures from manufacturing systems to energy production and distribution networks. Originally, these systems have been designed to insure the productivity and reliability of a system. Since the beginning of the century, ICS are targeted by hackers that use vulnerabilities in control-command architecture and component to physically damage the system and its environment. These vulnerabilities are induced by introduction of Information Technology (IT) that brings major improvements as communication speed or standardization of architecture. Furthermore, despite these advantages, IT provides incomplete or incompatible solutions from security point of view for ICS. This paper presents an innovative approach for detecting intrusions in ICS based on different works in safety and security fields. Indeed, by coupling the Filter Approach with theory of Intrusion Detection System (IDS), we propose an approach to detect and block orders that could damage the system. Moreover, the notion of distance between states is developed to anticipate potential attacks and distinguish cyberattacks from classical failures. The study is supported by simulation inspired by classical ICS and industrial platforms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Fipway is no longer supported by Schneider Electric that focuses on Ethernet based protocols.

References

  1. K. Stouffer, V. Pillitteri, S. Lightman, M. Abrams, A. Hahn, Guide to Industrial Control Systems (ICS) Security, National Institute of Standards and Technology, NIST SP 800-82r2 (2015)

    Google Scholar 

  2. J. Clarhaut, N. Dupoty, F. Ebel, J. Hennecart, F. Vicogne, Cyberdéfense: La sécurité de l’informatique industrielle (domotique, industrie, transports) Editions (ENI, France, 2015)

    Google Scholar 

  3. E.D. Knapp, Industrial Network Security: Securing Critical Infrastructure Networks for Smart Grid, Scada, and Other Industrial Control Systems, 2nd edn. (Elsevier, Waltham, 2014)

    Google Scholar 

  4. Y. Ashibani, Q.H. Mahmoud, Cyber physical systems security: analysis, challenges and solutions. Comput. Secur. 68, 81–97 (2017)

    Article  Google Scholar 

  5. ODVA, EtherNet/IP - CIP on Ethernet Technology (2016)

    Google Scholar 

  6. EtherCAT Technology Group, EtherCAT: The Ethernet Fieldbus (2012)

    Google Scholar 

  7. Y. Fourastier et al., Pietre-Cambacedes, Cybersécurité des installations industrielles: défendre ses systèmes numériques. Cépaduès Editions, 2015

    Google Scholar 

  8. S. McLaughlin et al., The cybersecurity landscape in industrial control systems. Proc. IEEE 104(5), 1039–1057 (2016)

    Article  Google Scholar 

  9. F. Khorrami, P. Krishnamurthy, R. Karri, Cybersecurity for control systems: a process-aware perspective. IEEE Des. Test 33(5), 75–83 (2016)

    Article  Google Scholar 

  10. RISI - The Repository of Industrial Security Incidents, 09 Sept 2016. [En ligne]. Disponible sur: http://www.risidata.com/Database/event_date/asc. Consulté le: 09 Sept 2016

  11. M. Abrams, J. Weiss, Malicious Control System Cyber Security Attack Case Study - Maroochy Water Services (Secur. Water Wastewater Syst, Australia 2008)

    Google Scholar 

  12. N. Falliere, L.O. Murchu, E. Chien, W32. stuxnet dossier. Symantec Security Response, Version 1.4, févr. (2011)

    Google Scholar 

  13. R.M. Lee, M.J. Assante, T. Conway, German steel mill cyber attack, in SANS ICS 2014 (2014)

    Google Scholar 

  14. R.M. Lee, M.J. Assante, T. Conway, Analysis of the Cyber Attack on the Ukrainian Power Grid, in SANS ICS 2016 (2016)

    Google Scholar 

  15. ICS-CERT, ICS-CERT/The Industrial Control Systems Cyber Emergency Response Team, 15 Sept 2016. [En ligne]. Disponible sur: https://ics-cert.us-cert.gov/. Consulté le: 15 Sept 2016

  16. M. Caselli, E. Zambon, F. Kargl, Sequence-aware intrusion detection in industrial control systems, in Proceedings of the 1st ACM Workshop on Cyber-Physical System Security (New York, NY, 2015), pp. 13–24

    Google Scholar 

  17. W. Li, L. Xie, Z. Deng, Z. Wang, False sequential logic attack on SCADA system and its physical impact analysis. Comput. Secur. 58, 149–159 (2016)

    Article  Google Scholar 

  18. Y. Wang, Z. Xu, J. Zhang, L. Xu, H. Wang, G. Gu, SRID: state relation based intrusion detection for False data injection attacks in SCADA, ed. by M. Kutyłowski, J. Vaidya, in Computer Security - ESORICS 2014 (Springer, Heidelberg, 2014), pp. 401–418

    Google Scholar 

  19. J. Graham, J. Hieb, J. Naber, Improving cybersecurity for industrial control systems, in 2016 IEEE 25th International Symposium on Industrial Electronics (ISIE) (2016), pp. 618–623

    Google Scholar 

  20. D.-T. Nguyen, Diagnostic en ligne des systèmes à événements discrets complexes: approche mixte logique/probabiliste, (Université Grenoble Alpes, Français, 2015)

    Google Scholar 

  21. D.E. Denning, An intrusion-detection model. IEEE Trans. Softw. Eng. 13(2), 222–232 (1987)

    Article  Google Scholar 

  22. R. Mitchell, I.-R. Chen, A survey of intrusion detection techniques for cyber-physical systems. ACM Comput. Surv. 46(4), 1–29 (2014)

    Article  Google Scholar 

  23. S. Cheung, B. Dutertre, M. Fong, U. Lindqvist, K. Skinner, A. Valdes, Using model-based intrusion detection for SCADA networks, in Proceedings of the SCADA security scientific symposium, vol. 46 (2007), pp. 1–12

    Google Scholar 

  24. N. Goldenberg, A. Wool, Accurate modeling of Modbus/TCP for intrusion detection in SCADA systems. Int. J. Crit. Infrastruct. Prot. 6(2), 63–75 (2013)

    Article  Google Scholar 

  25. R.R.R. Barbosa, R. Sadre, A. Pras, Difficulties in modeling SCADA traffic: a comparative analysis, in Passive and Active Measurement, vol. 7192 (Berlin, Germany, 2012), pp. 126–135

    Google Scholar 

  26. R.R.R. Barbosa, R. Sadre, A. Pras, Flow whitelisting in SCADA networks. Int. J. Crit. Infrastruct. Prot. 6(3–4), 150–158 (2013)

    Article  Google Scholar 

  27. C. Zimmer, B. Bhat, F. Mueller, S. Mohan, Time-based intrusion detection in cyber-physical systems, in Proceedings of the 1st ACM/IEEE International Conference on Cyber-Physical Systems (New York, NY, 2010), pp. 109–118

    Google Scholar 

  28. C. Bellettini, J.L. Rrushi, A product machine model for anomaly detection of interposition attacks on cyber-physical systems, ed. by S. Jajodia, P. Samarati, S. Cimato, in Proceedings of The Ifip Tc 11 23rd International Information Security Conference (Springer, Boston, 2008), pp. 285–300

    Google Scholar 

  29. S. McLaughlin, Blocking unsafe behaviors in control systems through static and dynamic policy enforcement, in Proceedings of the 52nd Annual Design Automation Conference, (New York, NY, 2015), pp. 55:1–55:6

    Google Scholar 

  30. S. Pan, T. H. Morris, U. Adhikari, V. Madani, Causal event graphs cyber-physical system intrusion detection system, in Proceedings of the Eighth Annual Cyber Security and Information Intelligence Research Workshop (New York, NY, 2013), pp. 40:1–40:4

    Google Scholar 

  31. A. Carcano, A. Coletta, M. Guglielmi, M. Masera, I. Nai Fovino, A. Trombetta, A Multidimensional critical state analysis for detecting intrusions in SCADA systems. IEEE Trans. Ind. Inform. 7(2), 179–186 (2011)

    Article  Google Scholar 

  32. I.N. Fovino, A. Coletta, A. Carcano, M. Masera, Critical state-based filtering system for securing SCADA network protocols. IEEE Trans. Ind. Electron. 59(10), 3943–3950 (2012)

    Article  Google Scholar 

  33. É. Zamaï, Architecture de surveillance-commande pour les systèmes à événements discrets complexes, PhD thesis, Université Paul Sabatier - Toulouse III (1997)

    Google Scholar 

  34. M. Combacau, M. Courvoisier, A hierarchical and modular structure for FMS control and monitoring, in Proceedings [1990]. AI, Simulation and Planning in High Autonomy Systems (1990), pp. 80–88

    Google Scholar 

  35. L.E. Holloway, B.H. Krogh, Monitoring behavioral evolution for on-line fault detection, in IFAC/IMACS International Conference “Fault Detection, Supervision and Safety for Technical Processes”, SAFEPROCESS’91 (Baden Baden, Germany, 1991), pp. 313–319

    Google Scholar 

  36. D. Cruette, J.P. Bourey, J.C. Gentina, Hierarchical specification and validation of operating sequences in the context of FMSs. Comput. Integr. Manuf. Syst. 4(3), 140–156 (1991)

    Article  Google Scholar 

  37. J.M. Flaus, Risk Analysis: Socio–technical and Industrial Systems (Wiley, Somerset, 2013)

    Book  Google Scholar 

  38. ANSSI. Ebios méthode de gestion des risques (2010)

    Google Scholar 

  39. G. Zhou, G. Biswas, W. Feng, A comprehensive diagnosis of hybrid systems for discrete and parametric faults using hybrid I/O automata, in 9th IFAC Symp. Fault Detect. Superv. AndSafety Tech. Process. SAFEPROCESS 2015, vol. 48, issue 21 (2015), pp. 143–149

    Google Scholar 

  40. A. Favela, H. Alla, J.M. Flaus, Modeling and analysis of time invariant linear hybrid systems, in 1998 IEEE International Conference on Systems, Man, and Cybernetics, 1998, vol. 1 (1998), pp. 839–844

    Google Scholar 

  41. S. Henry, E. Zamaï, M. Jacomino, Logic control law design for automated manufacturing systems. Eng. Appl. Artif. Intell. 25(4), 824–836 (2012)

    Article  Google Scholar 

  42. S. Genc, S. Lafortune, Predictability of event occurrences in partially-observed discrete-event systems. Automatica 45(2), 301–311 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  43. J. Chen, R. Kumar, Stochastic failure prognosability of discrete event systems. IEEE Trans. Autom. Control 60(6), 1570–1581 (2015)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This research was supported by the Direction Generale de l’Armement (DGA) Maîtrise de l’Information based in Bruz, France.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Franck Sicard .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sicard, F., Zamai, É., Flaus, JM. (2018). Critical States Distance Filter Based Approach for Detection and Blockage of Cyberattacks in Industrial Control Systems. In: Sayed-Mouchaweh, M. (eds) Diagnosability, Security and Safety of Hybrid Dynamic and Cyber-Physical Systems. Springer, Cham. https://doi.org/10.1007/978-3-319-74962-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-74962-4_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-74961-7

  • Online ISBN: 978-3-319-74962-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics