Skip to main content

Molecular Cytology Applications on Pancreas and Biliary Tract

  • Chapter
  • First Online:
Molecular Applications in Cytology

Abstract

Endoscopic ultrasound-guided fine-needle aspiration (EUS-FNA) and endoscopic retrograde cholangiopancreatography (ERCP) are today’s standard of care methods for obtaining a tissue diagnosis from the pancreatobiliary tract. The cytologic examination of material collected by either EUS-FNA or ERCP is usually sufficient for diagnosing the majority of pathologic conditions associated with the pancreatobiliary system. In addition to the essential role of cytomorphology for patient diagnosis and management, ancillary tests such as immunocytochemistry and molecular testing can be used to support the morphologic impression. Indeed, immunocytochemical stains for pancreatic neuroendocrine tumors, fluorescence in situ hybridization (FISH) for the evaluation of biliary tract strictures, and molecular analysis of KRAS gene mutations to support the diagnosis of pancreatobiliary carcinomas have been accepted as reliable ancillary tests applied to cytologic specimens. However, controversies exist regarding the routine implementation of such tests due to limitations such as the need for a substantial amount of diagnostic material, the labor-intensive and time-consuming nature of some of the techniques, the moderate specificity, difficulties in interpreting the results, and the relative costs of molecular methods. Currently, there is not sufficient clinical evidence to support widespread adoption of most molecular tests. Nevertheless, recent studies and new techniques, such as next-generation sequencing (NGS), could provide more comprehensive knowledge of the molecular landscape of pancreatobiliary tumors that may result in the discovery of biomarkers for future targeted therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Vilmann P, Jacobsen GK, Henriksen FW, et al. Endoscopic ultrasonography with guided fine needle aspiration biopsy in pancreatic disease. Gastrointest Endosc. 1992;38:172–3.

    Article  CAS  PubMed  Google Scholar 

  2. Shi C, Daniels JA, Hruban RH. Molecular characterization of pancreatic neoplasms. Adv Anat Pathol. 2008;15:185–95.

    Article  CAS  PubMed  Google Scholar 

  3. Hong SM, Park JY, Hruban RH, et al. Molecular signatures of pancreatic cancer. Arch Pathol Lab Med. 2011;135:716–27.

    PubMed  PubMed Central  CAS  Google Scholar 

  4. Reid MD, Saka B, Balci S, et al. Molecular genetics of pancreatic neoplasms and their morphologic correlates: an update on recent advances and potential diagnostic applications. Am J Clin Pathol. 2014;141:168–80.

    Article  CAS  PubMed  Google Scholar 

  5. Klimstra DS. Nonductal neoplasms of the pancreas. Mod Pathol. 2007;20(Suppl 1):S94–112.

    Article  PubMed  Google Scholar 

  6. Hruban RH, Klimstra DS. Adenocarcinoma of the pancreas. Semin Diagn Pathol. 2014;31:443–51.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Cowan RW, Maitra A. Genetic progression of pancreatic cancer. Cancer J. 2014;20:80–4.

    Article  CAS  PubMed  Google Scholar 

  8. Layfield LJ, Ehya H, Filie AC, et al. Utilization of ancillary studies in the cytologic diagnosis of biliary and pancreatic lesions: the Papanicolaou Society of Cytopathology guidelines for pancreatobiliary cytology. Diagn Cytopathol. 2014;42:351–62.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Tanaka Y, Kato K, Notohara K, et al. Frequent beta-catenin mutation and cytoplasmic/nuclear accumulation in pancreatic solid-pseudopapillary neoplasm. Cancer Res. 2001;61:8401–4.

    PubMed  CAS  Google Scholar 

  10. Abraham SC, Klimstra DS, Wilentz RE, et al. Solid-pseudopapillary tumors of the pancreas are genetically distinct from pancreatic ductal adenocarcinomas and almost always harbor beta-catenin mutations. Am J Pathol. 2002;160:1361–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. La Rosa S, Sessa F, Capella C. Acinar cell carcinoma of the pancreas: overview of clinicopathologic features and insights into the molecular pathology. Front Med. 2015;2:41.

    Google Scholar 

  12. Chmielecki J, Hutchinson KE, Frampton GM, et al. Comprehensive genomic profiling of pancreatic acinar cell carcinomas identifies recurrent RAF fusions and frequent inactivation of DNA repair genes. Cancer Discov. 2014;4:1398–405.

    Article  CAS  PubMed  Google Scholar 

  13. Bournet B, Gayral M, Torrisani J, et al. Role of endoscopic ultrasound in the molecular diagnosis of pancreatic cancer. World J Gastroenterol. 2014;20:10758–68.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Bournet B, Souque A, Senesse P, et al. Endoscopic ultrasound-guided fine-needle aspiration biopsy coupled with KRAS mutation assay to distinguish pancreatic cancer from pseudotumoral chronic pancreatitis. Endoscopy. 2009;41:552–7.

    Article  CAS  PubMed  Google Scholar 

  15. Khalid A, McGrath K, Pal R, et al. Microdissection based genotyping improves the accuracy of EUS guided FNA of pancreatic tumors. Gastrointest Endosc. 2004;59:94.

    Article  Google Scholar 

  16. de Biase D, de Luca C, Gragnano G, et al. Fully automated PCR detection of KRAS mutations on pancreatic endoscopic fine-needle aspirates. J Clin Pathol. 2016. https://doi.org/10.1136/jclinpath-2016-203696.

  17. Bournet B, Pointreau A, Souque A, et al. Gene expression signature of advanced pancreatic ductal adenocarcinoma using low density array on endoscopic ultrasound-guided fine needle aspiration samples. Pancreatology. 2012;12:27–34.

    Article  CAS  PubMed  Google Scholar 

  18. Brand RE, Adai AT, Centeno BA, et al. A microRNA-based test improves endoscopic ultrasound-guided cytologic diagnosis of pancreatic cancer. Clin Gastroenterol Hepatol. 2014;12:1717–23.

    Article  CAS  PubMed  Google Scholar 

  19. Kubiliun N, Ribeiro A, Fan YS, et al. EUS-FNA with rescue fluorescence in situ hybridization for the diagnosis of pancreatic carcinoma in patients with inconclusive on-site cytopathology results. Gastrointest Endosc. 2011;74:541–7.

    Article  PubMed  Google Scholar 

  20. Winter JM, Ting AH, Vilardell F, et al. Absence of E-cadherin expression distinguishes noncohesive from cohesive pancreatic cancer. Clin Cancer Res. 2008;14:412–8.

    Article  CAS  PubMed  Google Scholar 

  21. Higashi M, Yokoyama S, Yamamoto T, et al. Mucin expression in endoscopic ultrasound-guided fine-needle aspiration specimens is a useful prognostic factor in pancreatic ductal adenocarcinoma. Pancreas. 2015;44:728–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Carpizo DR, Allen PJ, Brennan MF. Current management of cystic neoplasms of the pancreas. Surgeon. 2008;6:298–307.

    Article  CAS  PubMed  Google Scholar 

  23. Laffan TA, Horton KM, Klein AP, et al. Prevalence of unsuspected pancreatic cysts on MDCT. Am J Roentgenol. 2008;191:802–7.

    Article  Google Scholar 

  24. Lee KS, Sekhar A, Rofsky NM, et al. Prevalence of incidental pancreatic cysts in the adult population on MR imaging. Am J Gastroenterol. 2010;105:2079–84.

    Article  PubMed  Google Scholar 

  25. Brugge WR, Lewandrowski K, Lee-Lewandrowski E, et al. The diagnosis of pancreatic cystic neoplasms: a report of the cooperative pancreatic cyst (CPC) study. Gastroenterology. 2004;126:1330–6.

    Article  PubMed  Google Scholar 

  26. Cizginer S, Turner B, Bilge AR, et al. Cyst fluid carcinoembryonic antigen is an accurate diagnostic marker of pancreatic mucinous cysts. Pancreas. 2013;40:1024–8.

    Article  CAS  Google Scholar 

  27. Jimenez RE, Warshaw AL, Z’graggen K, et al. Sequential accumulation of KRAS mutations and p53 overexpression in the progression of pancreatic mucinous cystic neoplasms to malignancy. Ann Surg. 1999;230:501–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Z’graggen K, Rivera JA, Compton CC, et al. Prevalence of activating KRAS mutations in the evolutionary stages of neoplasia in intraductal papillary mucinous tumors of the pancreas. Ann Surg. 1997;226:498–500.

    Google Scholar 

  29. Biankin AV, Biankin SA, Kench JG, et al. Aberrant p16(INK4A) and DPC4/Smad4 expression in intraductal papillary mucinous tumors of the pancreas is associated with invasive ductal adenocarcinoma. Gut. 2002;50:861–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Iacobuzio-Donahue CA, Wilentz RE, Argani P, et al. Dpc4 protein in mucinous cystic neoplasms of the pancreas: frequent loss of expression in invasive carcinomas suggests a role in genetic progression. Am J Surg Pathol. 2000;24:1544–8.

    Article  CAS  PubMed  Google Scholar 

  31. Lapkus O, Gologan O, Liu Y, et al. Determination of sequential mutation accumulation in pancreas and bile duct brushing cytology. Mod Pathol. 2006;19:907–13.

    Article  PubMed  Google Scholar 

  32. Caldas C, Hahn SA, da Costa L, et al. Frequent somatic mutations and homozygous deletions of the p16 (MTS1) gene in pancreatic adenocarcinoma. Nat Genet. 1994;8:27–32.

    Article  CAS  PubMed  Google Scholar 

  33. Shao J, Zhang L, Gao J, et al. Aberrant expression of PTCH (patched gene) and SMO (smoothened gene) in human pancreatic cancerous tissues and its association with hyperglycemia. Pancreas. 2006;33:38–44.

    Article  CAS  PubMed  Google Scholar 

  34. Khalid A, Zahid M, Finkelstein SD, et al. Pancreatic cyst fluid DNA analysis in evaluating pancreatic cysts: a report of the PANDA study. Gastrointest Endosc. 2009;69:1095–102.

    Article  Google Scholar 

  35. Macgregor-Das AM, Iacobuzio-Donahue CA. Molecular pathways in pancreatic carcinogenesis. J Surg Oncol. 2013;107:8–14.

    Article  CAS  PubMed  Google Scholar 

  36. Wu J, Jiao Y, Dal Molin M, et al. Whole-exome sequencing of neoplastic cysts of the pancreas reveals recurrent mutations in components of ubiquitin-dependent pathways. Proc Natl Acad Sci U S A. 2011;27:21188–93.

    Article  Google Scholar 

  37. Wu J, Matthaei H, Maitra A, et al. Recurrent GNAS mutations define an unexpected pathway for pancreatic cyst development. Sci Transl Med. 2011;3:92ra66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ryu JK, Matthaei H, dal Molin M, et al. Elevated microRNA miR-21 levels in pancreatic cyst fluid are predictive of mucinous precursor lesions of ductal adenocarcinoma. Pancreatology. 2011;11:343–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Matthaei H, Wylie D, Lloyd MB, et al. miRNA biomarkers in cyst fluid augment the diagnosis and management of pancreatic cysts. Clin Cancer Res. 2012;17:4713–24.

    Article  CAS  Google Scholar 

  40. Bellizzi AM, Stelow EB. Pancreatic cytopathology: a practical approach and review. Arch Pathol Lab Med. 2009;133:388–404.

    PubMed  Google Scholar 

  41. Bournet B, Buscail C, Muscari F, et al. Targeting KRAS for diagnosis, prognosis, and treatment of pancreatic cancer: Hopes and realities. Eur J Cancer. 2016;54:75–83.

    Article  CAS  PubMed  Google Scholar 

  42. Zagouri F, Sergentanis TN, Chrysikos D, et al. Molecularly targeted therapies in metastatic pancreatic cancer: a systematic review. Pancreas. 2013;42:760–73.

    Article  CAS  PubMed  Google Scholar 

  43. Pitman MB, Layfield LJ. Guidelines for pancreaticobiliary cytology from the Papanicolaou Society of Cytopathology: a review. Cancer Cytopathol. 2014;122:399–411.

    Article  PubMed  Google Scholar 

  44. Pitman MB, Centeno BA, Ali SZ, et al. Standardized terminology and nomenclature for pancreatobiliary cytology: the Papanicolaou Society of Cytopathology guidelines. Diagn Cytopathol. 2014;42:338–50.

    Article  PubMed  Google Scholar 

  45. Layfield LJ, Ehya H, Filie AC, et al. Utilization of ancillary studies in the cytologic diagnosis of biliary and pancreatic lesions: the Papanicolaou Society of Cytopathology guidelines. Cytojournal. 2014;11(suppl 1):4.

    PubMed  PubMed Central  Google Scholar 

  46. Gillis A, Cipollone I, Cousins G, et al. Does EUS-FNA molecular analysis carry additional value when compared to cytology in the diagnosis of pancreatic cystic neoplasm? A systematic review. HPB. 2015;17:377–86.

    Article  PubMed  Google Scholar 

  47. Panarelli NC, Sela R, Schreiner AM, et al. Commercial molecular panels are of limited utility in the classification of pancreatic cystic lesions. Am J Surg Pathol. 2012;36:1434–43.

    Article  PubMed  Google Scholar 

  48. Weber A, Schmid RA, Prinz C. Diagnostic approaches to cholangiocarcinoma. World J Gastroenterol. 2008;14:4131–6.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Sethi R, Singh K, Warner B, et al. The impact of brush cytology from endoscopic retrograde cholangiopancreatography (ERCP) on patient management at a UK teaching hospital. Frontline Gastroenterol. 2016;7:97–101.

    Article  PubMed  Google Scholar 

  50. Brugge W, Dewitt J, Klapman JB, et al. Papanicolaou Society of Cytopathology. Techniques for cytologic sampling of pancreatic and bile duct lesions. Diagn Cytopathol. 2014;42:333–7.

    Article  PubMed  Google Scholar 

  51. Stewart CJR, Mills PR, Carter R, et al. Brush cytology in the assessment of pancreatico-biliary strictures: a review of 406 cases. J Clin Pathol. 2001;54:449–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Govil H, Reddy V, Kluskens L, et al. Brush cytology of the biliary tract: retrospective study of 278 cases with histopathologic correlation. Diagn Cytopathol. 2002;26:273–7.

    Article  PubMed  Google Scholar 

  53. Eiholm S, Thielsen P, Kromann-Andersen H. Endoscopic brush cytology from biliary duct system is still valuable. Dan Med J. 2013;60:A4656.

    PubMed  Google Scholar 

  54. Mehmood S, Loya A, Yusuf MA. Biliary brush cytology revisited. Acta Cytol. 2016;60:167–72.

    Article  PubMed  Google Scholar 

  55. Layfield LJ, Cramer H. Primary sclerosing cholangitis as a cause of false positive bile duct brushing cytology: report of two cases. Diagn Cytopathol. 2005;32:119–24.

    Article  PubMed  Google Scholar 

  56. Logrono R, Kurtycz DF, Molina CP, et al. Analysis of false-negative diagnoses on endoscopic brush cytology of biliary and pancreatic duct strictures: the experience at 2 university hospitals. Arch Pathol Lab Med. 2000;124:387–92.

    PubMed  CAS  Google Scholar 

  57. Kipp BR, Barr Fritcher EG, Pettengill JE, et al. Improving the accuracy of pancreatobiliary tract cytology with fluorescence in situ hybridization: a molecular test with proven clinical success. Cancer Cytopathol. 2013;121:610–9.

    Article  PubMed  Google Scholar 

  58. Gonda TA, Glick MP, Sethi A, et al. Polysomy and p16 deletion by fluorescence in situ hybridization in the diagnosis of indeterminate biliary strictures. Gastrointest Endosc. 2012;75:74–9.

    Article  PubMed  Google Scholar 

  59. Vlajnic T, Somaini G, Savic S, et al. Targeted multiprobe fluorescence in situ hybridization analysis for elucidation of inconclusive pancreatobiliary cytology. Cancer Cytopathol. 2014;122:627–34.

    Article  PubMed  Google Scholar 

  60. Kipp BR, Stadheim LM, Halling SA, et al. A comparison of routine cytology and fluorescence in situ hybridization for the detection of malignant bile duct strictures. Am J Gastroenterol. 2004;99:1675–81.

    Article  PubMed  Google Scholar 

  61. Barr Fritcher EG, Kipp BR, Halling KC, et al. A multivariable model using advanced cytologic methods for the evaluation of indeterminate pancreaticobiliary strictures. Gastroenterology. 2009;136:2180–6.

    Article  Google Scholar 

  62. Barr Fritcher EG, Voss JS, Jenkins SM, et al. Primary sclerosing cholangitis with equivocal cytology: fluorescence in situ hybridization and serum CA 19-9 predict risk of malignancy. Cancer Cytopathol. 2013;121:708–17.

    Article  CAS  PubMed  Google Scholar 

  63. Sturm PD, Rauws EA, Hruban RH, et al. Clinical value of K-ras codon 12 analysis and endobiliary brush cytology for the diagnosis of malignant extrahepatic bile duct stenosis. Clin Cancer Res. 1999;5:629–35.

    PubMed  CAS  Google Scholar 

  64. van Heek NT, Clayton SJ, Sturm PD, et al. Comparison of the novel quantitative ARMS assay and an enriched PCR-ASO assay for K-ras mutations with conventional cytology on endobiliary brush cytology from 312 consecutive extrahepatic biliary stenoses. J Clin Pathol. 2005;58:1315–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Cai G, Mahooti S, Lipata FM, et al. Diagnostic value of K-ras mutation analysis for pancreaticobiliary cytology specimens with indeterminate diagnosis. Cancer Cytopathol. 2012;120:313–8.

    Article  CAS  PubMed  Google Scholar 

  66. Kipp BR, Fritcher EG, Clayton AC, et al. Comparison of KRAS mutation analysis and FISH for detecting pancreatobiliary tract cancer in cytology specimens collected during endoscopic retrograde cholangiopancreatography. J Mol Diagn. 2010;12(6):780.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Dudley JC, Zheng Z, McDonald T, et al. Next-generating sequencing and fluorescence in situ hybridization have comparable performance characteristics in the analysis of pancreaticobiliary brushings in malignancy. J Mol Diagn. 2016;18:124–30.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rene Gerhard .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gerhard, R., Wu, R.I., Vergara, N. (2018). Molecular Cytology Applications on Pancreas and Biliary Tract. In: Schmitt, F. (eds) Molecular Applications in Cytology. Springer, Cham. https://doi.org/10.1007/978-3-319-74942-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-74942-6_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-74940-2

  • Online ISBN: 978-3-319-74942-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics