Skip to main content

Cell–Surface Interactions

  • Chapter
  • First Online:
Cell Culture Technology

Part of the book series: Learning Materials in Biosciences ((LMB))

Abstract

The interactions that can occur between a cell and an adjacent biomaterial in culture are vast and depend on the biochemical, physical, and mechanical properties of the biomaterial. The present chapter will discuss the effects of key biomaterial properties on cell attachment, proliferation, migration, and differentiation in culture. These cell–surface interactions will be discussed in the context of the envisioned clinical application of the biomaterials to facilitate an improved understanding of the “big picture” considerations when studying biomaterial-based technologies in cell culture, with a particular focus on tissue engineering technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Akiyama Y, Kikuchi A, Yamato M, Okano T. Ultrathin poly(N-isopropylacrylamide) grafted layer on polystyrene surfaces for cell adhesion/detachment control. Langmuir. 2004;20:5506–11. https://doi.org/10.1021/la036139f.

    Article  CAS  PubMed  Google Scholar 

  2. Amable PR, Teixeira MVT, Carias RBV, Granjeiro JM, Borojevic R. Protein synthesis and secretion in human mesenchymal cells derived from bone marrow, adipose tissue and Wharton’s jelly. Stem Cell Res Ther. 2014;5:53. https://doi.org/10.1186/scrt442.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ashe HL, Briscoe J. The interpretation of morphogen gradients. Development. 2006;133:385–94. https://doi.org/10.1242/dev.02238.

    Article  CAS  PubMed  Google Scholar 

  4. Asti A, Gioglio L. Natural and synthetic biodegradable polymers: different scaffolds for cell expansion and tissue formation. Int J Artif Organs. 2014;37:187–205. doi:10.530/ijao.5000307.

    Google Scholar 

  5. Badylak SF, Taylor D, Uygun K. Whole-organ tissue engineering: decellularization and recellularization of three-dimensional matrix scaffolds. Annu Rev Biomed Eng. 2011;13:27–53. https://doi.org/10.1146/annurev-bioeng-071910-124743.

    Article  CAS  PubMed  Google Scholar 

  6. Badylak SF, Weiss DJ, Caplan A, Macchiarini P. Engineered whole organs and complex tissues. Lancet. 2012;379:943–52. https://doi.org/10.1016/S0140-6736(12)60073-7.

    Article  PubMed  Google Scholar 

  7. Bahramsoltani M, Slosarek I, De Spiegelaere W, Plendl J. Angiogenesis and collagen type IV expression in different endothelial cell culture systems. Anat Histol Embryol. 2014;43:103–15. https://doi.org/10.1111/ahe.12052.

    Article  CAS  PubMed  Google Scholar 

  8. Baptista PM, Siddiqui MM, Lozier G, Rodriguez SR, Atala A, Soker S. The use of whole organ decellularization for the generation of a vascularized liver organoid. Hepatology. 2011;53:604–17.

    Article  CAS  Google Scholar 

  9. Bergsma EJ, Rozema FR, Bos RR, de Bruijn WC. Foreign body reactions to resorbable poly(L-lactide) bone plates and screws used for the fixation of unstable zygomatic fractures. J Oral Maxillofac Surg. 1993;51:666–70.

    Article  CAS  Google Scholar 

  10. Biggs MJP, Richards RG, Dalby MJ. Nanotopographical modification: a regulator of cellular function through focal adhesions. Nanomedicine. 2010;6:619–33. https://doi.org/10.1016/j.nano.2010.01.009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bissell MJ, Radisky DC, Rizki A, Weaver VM, Petersen OW. The organizing principle: microenvironmental influences in the normal and malignant breast. Differentiation. 2002;70:537–46. https://doi.org/10.1046/j.1432-0436.2002.700907.x.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Bokhari MA, Akay G, Zhang S, Birch MA. The enhancement of osteoblast growth and differentiation in vitro on a peptide hydrogel-polyHIPE polymer hybrid material. Biomaterials. 2005;26:5198–208. https://doi.org/10.1016/j.biomaterials.2005.01.040.

    Article  CAS  PubMed  Google Scholar 

  13. Bollenbach T, Pantazis P, Kicheva A, Bokel C, Gonzalez-Gaitan M, Julicher F. Precision of the Dpp gradient. Development. 2008;135:1137–46. https://doi.org/10.1242/dev.012062.

    Article  CAS  PubMed  Google Scholar 

  14. Bosman FT, Stamenkovic I. Functional structure and composition of the extracellular matrix. J Pathol. 2003;200:423–8. https://doi.org/10.1002/path.1437.

    Article  CAS  PubMed  Google Scholar 

  15. Bosnakovski D, Mizuno M, Kim G, Takagi S, Okumura M, Fujinaga T. Chondrogenic differentiation of bovine bone marrow mesenchymal stem cells (MSCs) in different hydrogels: influence of collagen type II extracellular matrix on MSC chondrogenesis. Biotechnol Bioeng. 2006;93:1152–63. https://doi.org/10.1002/bit.20828.

    Article  CAS  PubMed  Google Scholar 

  16. Brown TD. Techniques for mechanical stimulation of cells in vitro: a review. J Biomech. 2000;33:3–14.

    Article  CAS  Google Scholar 

  17. Canalle LA, Lowik DWPM, van Hest JCM. Polypeptide-polymer bioconjugates. Chem Soc Rev. 2010;39:329–53. https://doi.org/10.1039/B807871H.

    Article  CAS  PubMed  Google Scholar 

  18. Canavan HE, Cheng X, Graham DJ, Ratner BD, Castner DG. Surface characterization of the extracellular matrix remaining after cell detachment from a thermoresponsive polymer. Langmuir. 2005a;21:1949–55. https://doi.org/10.1021/la048546c.

    Article  CAS  PubMed  Google Scholar 

  19. Canavan HE, Cheng X, Graham DJ, Ratner BD, Castner DG. Cell sheet detachment affects the extracellular matrix: a surface science study comparing thermal liftoff, enzymatic, and mechanical methods. J Biomed Mater Res A. 2005b;75:1–13. https://doi.org/10.1002/jbm.a.30297.

    Article  CAS  PubMed  Google Scholar 

  20. Carson JS, Bostrom MPG. Synthetic bone scaffolds and fracture repair. Injury. 2007;38(Suppl 1):S33–7. https://doi.org/10.1016/j.injury.2007.02.008.

    Article  PubMed  Google Scholar 

  21. Chen CS, Mrksich M, Huang S, Whitesides GM, Ingber DE. Geometric control of cell life and death. Science. 1997;276:1425–8. https://doi.org/10.1126/science.276.5317.1425.

    Article  CAS  PubMed  Google Scholar 

  22. Chen J, Xu J, Wang A, Zheng M. Scaffolds for tendon and ligament repair: review of the efficacy of commercial products. Expert Rev Med Devices. 2009;6:61–73. https://doi.org/10.1586/17434440.6.1.61.

    Article  PubMed  Google Scholar 

  23. Chung I-M, Enemchukwu NO, Khaja SD, Murthy N, Mantalaris A, Garcia AJ. Bioadhesive hydrogel microenvironments to modulate epithelial morphogenesis. Biomaterials. 2008;29:2637–45. https://doi.org/10.1016/j.biomaterials.2008.03.008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Cole MA, Voelcker NH, Thissen H, Griesser HJ. Stimuli-responsive interfaces and systems for the control of protein-surface and cell-surface interactions. Biomaterials. 2009;30:1827–50. https://doi.org/10.1016/j.biomaterials.2008.12.026.

    Article  CAS  PubMed  Google Scholar 

  25. Crapo PM, Gilbert TW, Badylak SF. An overview of tissue and whole organ decellularization processes. Biomaterials. 2011;32:3233–43. https://doi.org/10.1016/j.biomaterials.2011.01.057.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Crapo PM, Tottey S, Slivka PF, Badylak SF. Effects of biologic scaffolds on human stem cells and implications for CNS tissue engineering. Tissue Eng Part A. 2014;20:313–23. https://doi.org/10.1089/ten.TEA.2013.0186.

    Article  CAS  PubMed  Google Scholar 

  27. Dahmen C, Auernheimer J, Meyer A, Enderle A, Goodman SL, Kessler H. Improving implant materials by coating with nonpeptidic highly specific integrin ligands. Angew Chem Int Ed. 2004;43:6649–52. https://doi.org/10.1002/anie.200460770.

    Article  CAS  Google Scholar 

  28. Dai J, Sheetz MP. Regulation of endocytosis, exocytosis, and shape by membrane tension. Cold Spring Harb Symp Quant Biol. 1995;60:567–71. https://doi.org/10.1101/SQB.1995.060.01.060.

    Article  CAS  PubMed  Google Scholar 

  29. Dalby MJ, Gadegaard N, Tare R, Andar A, Riehle MO, Herzyk P, Wilkinson CDW, Oreffo ROC. The control of human mesenchymal cell differentiation using nanoscale symmetry and disorder. Nat Mater. 2007;6:997–1003. https://doi.org/10.1038/nmat2013.

    Article  CAS  PubMed  Google Scholar 

  30. Daly SM, Przybycien TM, Tilton RD. Coverage-dependent orientation of lysozyme adsorbed on silica. Langmuir. 2003;19:3848–57. https://doi.org/10.1021/la026690x.

    Article  CAS  Google Scholar 

  31. Datta N, Holtorf HL, Sikavitsas VI, Jansen JA, Mikos AG. Effect of bone extracellular matrix synthesized in vitro on the osteoblastic differentiation of marrow stromal cells. Biomaterials. 2005;26:971–7. https://doi.org/10.1016/j.biomaterials.2004.04.001.

    Article  CAS  PubMed  Google Scholar 

  32. De Arcangelis A, Georges-Labouesse E. Integrin and ECM functions: roles in vertebrate development. Trends Genet. 2016;16:389–95.

    Article  Google Scholar 

  33. Elhadj S, Mousa SA, Forsten-Williams K. Chronic pulsatile shear stress impacts synthesis of proteoglycans by endothelial cells: effect on platelet aggregation and coagulation. J Cell Biochem. 2002;86:239–50. https://doi.org/10.1002/jcb.10226.

    Article  CAS  PubMed  Google Scholar 

  34. Engler AJ, Sen S, Sweeney HL, Discher DE. Matrix elasticity directs stem cell lineage specification. Cell. 2006;126:677–89. https://doi.org/10.1016/j.cell.2006.06.044.

    Article  CAS  PubMed  Google Scholar 

  35. Ercan B, Khang D, Carpenter J, Webster TJ. Using mathematical models to understand the effect of nanoscale roughness on protein adsorption for improving medical devices. Int J Nanomedicine. 2013;8(Suppl 1):75–81. https://doi.org/10.2147/IJN.S47286.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Fan R, Deng X, Zhou L, Gao X, Fan M, Wang Y, Guo G. Injectable thermosensitive hydrogel composite with surface-functionalized calcium phosphate as raw materials. Int J Nanomedicine. 2014;9:615–26. https://doi.org/10.2147/IJN.S52689.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Fioretta ES, Fledderus JO, Baaijens FPT, Bouten CVC. Influence of substrate stiffness on circulating progenitor cell fate. J Biomech. 2012;45:736–44. https://doi.org/10.1016/j.jbiomech.2011.11.013.

    Article  PubMed  Google Scholar 

  38. Freshney RI. Culture of animal cells: a manual of basic technique and specialized applications. Hoboken: Wiley-Blackwell; 2016. https://doi.org/10.1002/9780470649367.

    Book  Google Scholar 

  39. Freytes DO, Stoner RM, Badylak SF. Uniaxial and biaxial properties of terminally sterilized porcine urinary bladder matrix scaffolds. J Biomed Mater Res B Appl Biomater. 2008;84:408–14. https://doi.org/10.1002/jbm.b.30885.

    Article  CAS  PubMed  Google Scholar 

  40. Fu J, Wang Y-K, Yang MT, Desai RA, Yu X, Liu Z, Chen CS. Mechanical regulation of cell function with geometrically modulated elastomeric substrates. Nat Methods. 2010;7:733–6. https://doi.org/10.1038/nmeth.1487.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Gaborit N, Larbouret C, Vallaghe J, Peyrusson F, Bascoul-Mollevi C, Crapez E, Azria D, Chardes T, Poul M-A, Mathis G, Bazin H, Pelegrin A. Time-resolved fluorescence resonance energy transfer (TR-FRET) to analyze the disruption of EGFR/HER2 dimers: a new method to evaluate the efficiency of targeted therapy using monoclonal antibodies. J Biol Chem. 2011;286:11337–45. https://doi.org/10.1074/jbc.M111.223503.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Gassmann P, Enns A, Haier J. Role of tumor cell adhesion and migration in organ-specific metastasis formation. Oncol Res Treat. 2004;27:577–82. https://doi.org/10.1159/000081343.

    Article  CAS  Google Scholar 

  43. Giancotti FG, Ruoslahti E. Integrin signaling. Science. 1999;285:1028–32.

    Article  CAS  Google Scholar 

  44. Gorschewsky O, Klakow A, Riechert K, Pitzl M, Becker R. Clinical comparison of the Tutoplast allograft and autologous patellar tendon (bone-patellar tendon-bone) for the reconstruction of the anterior cruciate ligament: 2- and 6-year results. Am J Sports Med. 2005a;33:1202–9. https://doi.org/10.1177/0363546504271510.

    Article  PubMed  Google Scholar 

  45. Gorschewsky O, Puetz A, Riechert K, Klakow A, Becker R. Quantitative analysis of biochemical characteristics of bone-patellar tendon-bone allografts. Biomed Mater Eng. 2005b;15:403–11.

    CAS  PubMed  Google Scholar 

  46. Gouk S-S, Lim T-M, Teoh S-H, Sun WQ. Alterations of human acellular tissue matrix by gamma irradiation: histology, biomechanical property, stability, in vitro cell repopulation, and remodeling. J Biomed Mater Res B Appl Biomater. 2008;84:205–17. https://doi.org/10.1002/jbm.b.30862.

    Article  CAS  PubMed  Google Scholar 

  47. Guillemette MD, Cui B, Roy E, Gauvin R, Giasson CJ, Esch MB, Carrier P, Deschambeault A, Dumoulin M, Toner M, Germain L, Veres T, Auger FA. Surface topography induces 3D self-orientation of cells and extracellular matrix resulting in improved tissue function. Integr Biol (Camb). 2009;1:196–204. https://doi.org/10.1039/b820208g.

    Article  CAS  Google Scholar 

  48. Hodde J, Hiles M. Virus safety of a porcine-derived medical device: evaluation of a viral inactivation method. Biotechnol Bioeng. 2002;79:211–6. https://doi.org/10.1002/bit.10281.

    Article  CAS  PubMed  Google Scholar 

  49. Hudalla GA, Murphy WL. Chemically well-defined self-assembled monolayers for cell culture: toward mimicking the natural ECM. Soft Matter. 2011;7:9561–71. https://doi.org/10.1039/C1SM05596H.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Irie M. Photoresponsive polymers. In:New polymer materials. Berlin/Heidelberg: Springer; 1990. p. 27–67.

    Chapter  Google Scholar 

  51. Jung JP, Bhuiyan DB, Ogle BM. Solid organ fabrication: comparison of decellularization to 3D bioprinting. Biomater Res. 2016;20:27. https://doi.org/10.1186/s40824-016-0074-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kane RS, Takayama S, Ostuni E, Ingber DE, Whitesides GM. Patterning proteins and cells using soft lithography. Biomaterials. 1999;20:2363–76.

    Article  CAS  Google Scholar 

  53. Karakecili A, Messina GML, Yurtsever MC, Gumusderelioglu M, Marletta G. Impact of selective fibronectin nanoconfinement on human dental pulp stem cells. Colloids Surf B Biointerfaces. 2014;123:39–48. https://doi.org/10.1016/j.colsurfb.2014.08.008.

    Article  CAS  PubMed  Google Scholar 

  54. Kim D-H, Provenzano PP, Smith CL, Levchenko A. Matrix nanotopography as a regulator of cell function. J Cell Biol. 2012;197:351–60. https://doi.org/10.1083/jcb.201108062.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Koegler P, Clayton A, Thissen H, Santos GNC, Kingshott P. The influence of nanostructured materials on biointerfacial interactions. Adv Drug Deliv Rev. 2012;64:1820–39. https://doi.org/10.1016/j.addr.2012.06.001.

    Article  CAS  PubMed  Google Scholar 

  56. Koepsel JT, Brown PT, Loveland SG, Li W-J, Murphy WL. Combinatorial screening of chemically defined human mesenchymal stem cell culture substrates. J Mater Chem. 2012;22:19474–81. https://doi.org/10.1039/C2JM32242K.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kolhar P, Kotamraju VR, Hikita ST, Clegg DO, Ruoslahti E. Synthetic surfaces for human embryonic stem cell culture. J Biotechnol. 2010;146:143–6. https://doi.org/10.1016/j.jbiotec.2010.01.016.

    Article  CAS  PubMed  Google Scholar 

  58. Krutty JD, Schmitt SK, Gopalan P, Murphy WL. Surface functionalization and dynamics of polymeric cell culture substrates. Curr Opin Biotechnol. 2016;40:164–9. https://doi.org/10.1016/j.copbio.2016.05.006.

    Article  CAS  PubMed  Google Scholar 

  59. Kufelt O, El-Tamer A, Sehring C, Meissner M, Schlie-Wolter S, Chichkov BN. Water-soluble photopolymerizable chitosan hydrogels for biofabrication via two-photon polymerization. Acta Biomater. 2015;18:186–95. https://doi.org/10.1016/j.actbio.2015.02.025.

    Article  CAS  PubMed  Google Scholar 

  60. Kushida A, Yamato M, Konno C, Kikuchi A, Sakurai Y, Okano T. Temperature-responsive culture dishes allow nonenzymatic harvest of differentiated Madin-Darby canine kidney (MDCK) cell sheets. J Biomed Mater Res. 2000;51:216–23. https://doi.org/10.1002/(SICI)1097-4636(200008)51:2<216::AID-JBM10>3.0.CO;2-K.

    Article  CAS  PubMed  Google Scholar 

  61. Lambshead JW, Meagher L, O’Brien C, Laslett AL. Defining synthetic surfaces for human pluripotent stem cell culture. Cell Regen. 2013;2:7. https://doi.org/10.1186/2045-9769-2-7.

    Article  CAS  Google Scholar 

  62. Lander AD, Nie Q, Wan FYM. Do morphogen gradients arise by diffusion? Dev Cell. 2002;2:785–96.

    Article  CAS  Google Scholar 

  63. Laschke MW, Harder Y, Amon M, Martin I, Ph D, Farhadi J, Ring A, Ph D, Ru M, Carvalho C, Heberer M. Angiogenesis in tissue engineering : breathing life into constructed tissue substitutes. Tissue Eng. 2006;12:2093–104. https://doi.org/10.1089/ten.2006.12.2093.

    Article  CAS  PubMed  Google Scholar 

  64. Lee KY, Alsberg E, Hsiong S, Comisar W, Linderman J, Ziff R, Mooney D. Nanoscale adhesion ligand organization regulates osteoblast proliferation and differentiation. Nano Lett. 2004;4:1501–6. https://doi.org/10.1021/nl0493592.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Lee KY, Mooney DJ. Hydrogels for tissue engineering. Chem Rev. 2001;101:1869–79.

    Article  CAS  Google Scholar 

  66. Lee MR, Kwon KW, Jung H, Kim HN, Suh KY, Kim K, Kim K-S. Direct differentiation of human embryonic stem cells into selective neurons on nanoscale ridge/groove pattern arrays. Biomaterials. 2010;31:4360–6. https://doi.org/10.1016/j.biomaterials.2010.02.012.

    Article  CAS  PubMed  Google Scholar 

  67. Lin E, Sikand A, Wickware J, Hao Y, Derda R. Peptide microarray patterning for controlling and monitoring cell growth. Acta Biomater. 2016;34:53–9. https://doi.org/10.1016/j.actbio.2016.01.028.

    Article  CAS  PubMed  Google Scholar 

  68. Liu X, Ma PX. Polymeric scaffolds for bone tissue engineering. Ann Biomed Eng. 2004;32:477–86.

    Article  Google Scholar 

  69. Lovati AB, Bottagisio M, Moretti M. Decellularized and engineered tendons as biological substitutes: a critical review. Stem Cells Int. 2016;3:1–24.

    Article  Google Scholar 

  70. Lukashev ME, Werb Z. ECM signalling: orchestrating cell behaviour and misbehaviour. Trends Cell Biol. 1998;8:437–41.

    Article  CAS  Google Scholar 

  71. Lund AW, Yener B, Stegemann JP, Plopper GE. The natural and engineered 3D microenvironment as a regulatory cue during stem cell fate determination. Tissue Eng Part B Rev. 2009;15:371–80. https://doi.org/10.1089/ten.TEB.2009.0270.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Lv F-J, Tuan RS, Cheung KMC, Leung VYL. Concise review: the surface markers and identity of human mesenchymal stem cells. Stem Cells. 2014;32:1408–19. https://doi.org/10.1002/stem.1681.

    Article  CAS  PubMed  Google Scholar 

  73. Ma PX. Biomimetic materials for tissue engineering. Adv Drug Deliv Rev. 2008;60:184–98. https://doi.org/10.1016/j.addr.2007.08.041.

    Article  CAS  PubMed  Google Scholar 

  74. Mann BK, Tsai AT, Scott-Burden T, West JL. Modification of surfaces with cell adhesion peptides alters extracellular matrix deposition. Biomaterials. 1999;20:2281–6.

    Article  CAS  Google Scholar 

  75. Martin C, Winet H, Bao JY. Acidity near eroding polylactide-polyglycolide in vitro and in vivo in rabbit tibial bone chambers. Biomaterials. 1996;17:2373–80.

    Article  CAS  Google Scholar 

  76. McNamara LE, McMurray RJ, Biggs MJP, Kantawong F, Oreffo ROC, Dalby MJ. Nanotopographical control of stem cell differentiation. J Tissue Eng. 2010;2010:120623. https://doi.org/10.4061/2010/120623.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Moreau MF, Gallois Y, Basle MF, Chappard D. Gamma irradiation of human bone allografts alters medullary lipids and releases toxic compounds for osteoblast-like cells. Biomaterials. 2000;21:369–76.

    Article  CAS  Google Scholar 

  78. Nair R, Shukla S, McDevitt TC. Acellular matrices derived from differentiating embryonic stem cells. J Biomed Mater Res A. 2008;87:1075–85. https://doi.org/10.1002/jbm.a.31851.

    Article  CAS  PubMed  Google Scholar 

  79. Nelson CM, Bissell MJ. Of extracellular matrix, scaffolds, and signaling: tissue architecture regulates development, homeostasis, and cancer. Annu Rev Cell Dev Biol. 2006;22:287–309. https://doi.org/10.1146/annurev.cellbio.22.010305.104315.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Nooeaid P, Salih V, Beier JP, Boccaccini AR. Osteochondral tissue engineering: scaffolds, stem cells and applications. J Cell Mol Med. 2012;16:2247–70. https://doi.org/10.1111/j.1582-4934.2012.01571.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. O’Brien FJ, Harley BA, Yannas IV, Gibson LJ. The effect of pore size on cell adhesion in collagen-GAG scaffolds. Biomaterials. 2005;26:433–41. https://doi.org/10.1016/j.biomaterials.2004.02.052.

    Article  CAS  PubMed  Google Scholar 

  82. Olah L, Borbas L. Properties of calcium carbonate-containing composite scaffolds. Acta Bioeng Biomech. 2008;10:61–6.

    PubMed  Google Scholar 

  83. Park J, Bauer S, Pittrof A, Killian MS, Schmuki P, von der Mark K. Synergistic control of mesenchymal stem cell differentiation by nanoscale surface geometry and immobilized growth factors on TiO2 nanotubes. Small. 2012;8:98–107. https://doi.org/10.1002/smll.201100790.

    Article  CAS  PubMed  Google Scholar 

  84. Pelay-Gimeno M, Glas A, Koch O, Grossmann TN. Structure-based design of inhibitors of protein–protein interactions: mimicking peptide binding epitopes. Angew Chem Int Ed. 2015;54:8896–927. https://doi.org/10.1002/anie.201412070.

    Article  CAS  Google Scholar 

  85. Peng L, Liu R, Marik J, Wang X, Takada Y, Lam KS. Combinatorial chemistry identifies high-affinity peptidomimetics against alpha4beta1 integrin for in vivo tumor imaging. Nat Chem Biol. 2006;2:381–9. https://doi.org/10.1038/nchembio798.

    Article  CAS  PubMed  Google Scholar 

  86. Petersen TH, Calle EA, Colehour MB, Niklason LE. Matrix composition and mechanics of decellularized lung scaffolds. Cells Tissues Organs. 2012;195:222–31. https://doi.org/10.1159/000324896.

    Article  CAS  PubMed  Google Scholar 

  87. Petersen TH, Calle EA, Zhao L, Lee EJ, Gui L, Raredon MB, Gavrilov K, Yi T, Zhuang ZW, Breuer C, Herzog E, Niklason LE. Tissue-engineered lungs for in vivo implantation. Science. 2010;329:538–41. https://doi.org/10.1126/science.1189345.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Pham QP, Kasper FK, Scott Baggett L, Raphael RM, Jansen JA, Mikos AG. The influence of an in vitro generated bone-like extracellular matrix on osteoblastic gene expression of marrow stromal cells. Biomaterials. 2008;29:2729–39. https://doi.org/10.1016/j.biomaterials.2008.02.025.

    Article  CAS  PubMed  Google Scholar 

  89. Pulsipher A, Yousaf MN. Self-assembled monolayers as dynamic model substrates for cell biology. In: Börner HG, Lutz J-F, editors. Bioactive surfaces. Berlin/Heidelberg: Springer; 2011. p. 103–34.

    Google Scholar 

  90. Raucher D, Sheetz MP. Cell spreading and lamellipodial extension rate is regulated by membrane tension. J Cell Biol. 2000;148:127.

    Article  CAS  Google Scholar 

  91. Roach P, Farrar D, Perry CC. Interpretation of protein adsorption: surface-induced conformational changes. J Am Chem Soc. 2005;127:8168–73. https://doi.org/10.1021/ja042898o.

    Article  CAS  PubMed  Google Scholar 

  92. Robertson A, Nutton RW, Keating JF. Current trends in the use of tendon allografts in orthopaedic surgery. J Bone Joint Surg Br. 2006;88:988–92. https://doi.org/10.1302/0301-620X.88B8.17555.

    Article  CAS  PubMed  Google Scholar 

  93. Rubashkin MG, Ou G, Weaver VM. Deconstructing signaling in three dimensions. Biochemistry. 2014;53:2078–90. https://doi.org/10.1021/bi401710d.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Schmitt SK, Murphy WL, Gopalan P. Crosslinked PEG mats for peptide immobilization and stem cell adhesion. J Mater Chem B. 2013;1:1349–60. https://doi.org/10.1039/C2TB00253A.

    Article  CAS  Google Scholar 

  95. Schmitt SK, Trebatoski DJ, Krutty JD, Xie AW, Rollins B, Murphy WL, Gopalan P. Combinatorial screening of chemically defined human mesenchymal stem cell culture substrates. J Mater Chem. 2012;22:19474–81. https://doi.org/10.1039/C2JM32242K.

    Article  Google Scholar 

  96. Schriebl K, Lim S, Choo A, Tscheliessnig A, Jungbauer A. Stem cell separation: a bottleneck in stem cell therapy. Biotechnol J. 2010;5:50–61. https://doi.org/10.1002/biot.200900115.

    Article  CAS  PubMed  Google Scholar 

  97. Seddon AM, Curnow P, Booth PJ. Membrane proteins, lipids and detergents: not just a soap opera. Biochim Biophys Acta Biomembr. 2004;1666:105–17.

    Article  CAS  Google Scholar 

  98. Sethuraman A, Vedantham G, Imoto T, Przybycien T, Belfort G. Protein unfolding at interfaces: slow dynamics of alpha-helix to beta-sheet transition. Proteins. 2004;56:669–78. https://doi.org/10.1002/prot.20183.

    Article  CAS  PubMed  Google Scholar 

  99. Sheetz MP, Dai J. Modulation of membrane dynamics and cell motility by membrane tension. Trends Cell Biol. 1996;6:85–9.

    Article  CAS  Google Scholar 

  100. Shin H, Jo S, Mikos AG. Modulation of marrow stromal osteoblast adhesion on biomimetic oligo[poly(ethylene glycol) fumarate] hydrogels modified with Arg-Gly-Asp peptides and a poly(ethyleneglycol) spacer. J Biomed Mater Res. 2002;61:169–79.

    Article  CAS  Google Scholar 

  101. Song JJ, Ott HC. Organ engineering based on decellularized matrix scaffolds. Trends Mol Med. 2011;17:424–32. https://doi.org/10.1016/j.molmed.2011.03.005.

    Article  CAS  Google Scholar 

  102. Stabler CT, Lecht S, Mondrinos MJ, Goulart E, Lazarovici P, Lelkes PI. Revascularization of decellularized lung scaffolds: principles and progress. Am J Physiol Lung Cell Mol Physiol. 2015;309:L1273–85. https://doi.org/10.1152/ajplung.00237.2015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Stuart MA, Huck WTS, Genzer J, Müller M, Ober C, Stamm M, Sukhorukov GB, Szleifer I, Tsukruk VV, Urban M, Winnik F, Zauscher S, Luzinov I, Minko S. Emerging applications of stimuli-responsive polymer materials. Nat Mater. 2010;9:101–13. https://doi.org/10.1038/nmat2614.

    Article  CAS  PubMed  Google Scholar 

  104. Sun T, Qing G, Su B, Jiang L. Functional biointerface materials inspired from nature. Chem Soc Rev. 2011;40:2909–21. https://doi.org/10.1039/c0cs00124d.

    Article  CAS  PubMed  Google Scholar 

  105. Sun WQ, Leung P. Calorimetric study of extracellular tissue matrix degradation and instability after gamma irradiation. Acta Biomater. 2008;4:817–26. https://doi.org/10.1016/j.actbio.2008.02.006.

    Article  PubMed  Google Scholar 

  106. Takezawa T, Mori Y, Yoshizato K. Cell culture on a thermo-responsive polymer surface. Biotechnology (N Y). 1990;8:854–6.

    CAS  Google Scholar 

  107. Thibault RA, Mikos AG, Kasper FK. Osteogenic differentiation of mesenchymal stem cells on demineralized and devitalized biodegradable polymer and extracellular matrix hybrid constructs. J Biomed Mater Res – Part A. 2013;101:1225–36. https://doi.org/10.1002/jbm.a.34610.

    Article  CAS  Google Scholar 

  108. Ulijn RV, Smith AM. Designing peptide based nanomaterials. Chem Soc Rev. 2008;37:664–75. https://doi.org/10.1039/b609047h.

    Article  CAS  PubMed  Google Scholar 

  109. van der Smissen A, Hoffmeister P-G, Friedrich N, Watarai A, Hacker MC, Schulz-Siegmund M, Anderegg U. Artificial extracellular matrices support cell growth and matrix synthesis of human dermal fibroblasts in macroporous 3D scaffolds. J Tissue Eng Regen Med. 2015;

    Google Scholar 

  110. Vilardaga J-P, Bunemann M, Krasel C, Castro M, Lohse MJ. Measurement of the millisecond activation switch of G protein-coupled receptors in living cells. Nat Biotechnol. 2003;21:807–12. https://doi.org/10.1038/nbt838.

    Article  CAS  PubMed  Google Scholar 

  111. Wang F, Weaver VM, Petersen OW, Larabell CA, Dedhar S, Briand P, Lupu R, Bissell MJ. Reciprocal interactions between beta1-integrin and epidermal growth factor receptor in three-dimensional basement membrane breast cultures: a different perspective in epithelial biology. Proc Natl Acad Sci U S A. 1998;95:14821–6.

    Article  CAS  Google Scholar 

  112. Wang H, Lin X-F, Wang L-R, Lin Y-Q, Wang J-T, Liu W-Y, Zhu G-Q, Braddock M, Zhong M, Zheng M-H. Decellularization technology in CNS tissue repair. Expert Rev Neurother. 2015;15:493–500. https://doi.org/10.1586/14737175.2015.1030735.

    Article  CAS  PubMed  Google Scholar 

  113. Wang P-Y, Thissen H, Kingshott P. Modulation of human multipotent and pluripotent stem cells using surface nanotopographies and surface-immobilised bioactive signals: a review. Acta Biomater. 2016;45:31–59. https://doi.org/10.1016/j.actbio.2016.08.054.

    Article  CAS  PubMed  Google Scholar 

  114. Wang P-Y, Tsai W-B, Voelcker NH. Screening of rat mesenchymal stem cell behaviour on polydimethylsiloxane stiffness gradients. Acta Biomater. 2012;8:519–30. https://doi.org/10.1016/j.actbio.2011.09.030.

    Article  CAS  PubMed  Google Scholar 

  115. Whitesides GM, Ostuni E, Takayama S, Jiang X, Ingber DE. Soft lithography in biology and biochemistry. Annu Rev Biomed Eng. 2001;3:335–73. https://doi.org/10.1146/annurev.bioeng.3.1.335.

    Article  CAS  PubMed  Google Scholar 

  116. Woo KM, Chen VJ, Ma PX. Nano-fibrous scaffolding architecture selectively enhances protein adsorption contributing to cell attachment. J Biomed Mater Res A. 2003;67:531–7. https://doi.org/10.1002/jbm.a.10098.

    Article  CAS  PubMed  Google Scholar 

  117. Wu Y, Puperi DS, Grande-Allen KJ, West JL. Ascorbic acid promotes extracellular matrix deposition while preserving valve interstitial cell quiescence within 3D hydrogel scaffolds. J Tissue Eng Regen Med. 2015;11:1963. https://doi.org/10.1002/term.2093.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Yagi H, Soto-Gutierrez A, Kitagawa Y. Whole-organ re-engineering: a regenerative medicine approach to digestive organ replacement. Surg Today. 2013;43:587–94. https://doi.org/10.1007/s00595-012-0396-1.

    Article  CAS  PubMed  Google Scholar 

  119. Yim EKF, Pang SW, Leong KW. Synthetic nanostructures inducing differentiation of human mesenchymal stem cells into neuronal lineage. Exp Cell Res. 2007;313:1820–9. https://doi.org/10.1016/j.yexcr.2007.02.031.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, Nie J, Jonsdottir GA, Ruotti V, Stewart R, Slukvin II, Thomson JA. Induced pluripotent stem cell lines derived from human somatic cells. Science. 2007;318:1917–20. https://doi.org/10.1126/science.1151526.

    Article  CAS  PubMed  Google Scholar 

  121. Zahir N, Weaver VM. Death in the third dimension: apoptosis regulation and tissue architecture. Curr Opin Genet Dev. 2004;14:71–80. https://doi.org/10.1016/j.gde.2003.12.005.

    Article  CAS  PubMed  Google Scholar 

  122. Zhang J, Niu C, Ye L, Huang H, He X, Tong W-G, Ross J, Haug J, Johnson T, Feng JQ, Harris S, Wiedemann LM, Mishina Y, Li L. Identification of the haematopoietic stem cell niche and control of the niche size. Nature. 2003;425:836–41. https://doi.org/10.1038/nature02041.

    Article  CAS  PubMed  Google Scholar 

  123. Zhang R, Mjoseng HK, Hoeve MA, Bauer NG, Pells S, Besseling R, Velugotla S, Tourniaire G, Kishen REB, Tsenkina Y, Armit C, Duffy CRE, Helfen M, Edenhofer F, de Sousa PA, Bradley M. A thermoresponsive and chemically defined hydrogel for long-term culture of human embryonic stem cells. Nat Commun. 2013;4:1335. https://doi.org/10.1038/ncomms2341.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Zheng W, Zhang W, Jiang X. Precise control of cell adhesion by combination of surface chemistry and soft lithography. Adv Healthc Mater. 2013;2:95–108. https://doi.org/10.1002/adhm.201200104.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Kurtis Kasper .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Livingston, M., Kurtis Kasper, F. (2018). Cell–Surface Interactions. In: Kasper, C., Charwat, V., Lavrentieva, A. (eds) Cell Culture Technology. Learning Materials in Biosciences. Springer, Cham. https://doi.org/10.1007/978-3-319-74854-2_7

Download citation

Publish with us

Policies and ethics