Skip to main content

Exploring Food Detection Using CNNs

  • Conference paper
  • First Online:
Computer Aided Systems Theory – EUROCAST 2017 (EUROCAST 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10672))

Included in the following conference series:

Abstract

One of the most common critical factors directly related to the cause of a chronic disease is unhealthy diet consumption. Building an automatic system for food analysis could enable a better understanding of the nutritional information associated to the food consumed and thus, help taking corrective actions on our diet. The Computer Vision community has focused its efforts on several areas involved in visual food analysis such as: food detection, food recognition, food localization, portion estimation, among others. For food detection, the best results in the state of the art were obtained using Convolutional Neural Networks. However, the results of all different approaches were tested on different datasets and, therefore, are not directly comparable. This article proposes an overview of the last advances on food detection and an optimal model based on the GoogLeNet architecture, Principal Component Analysis, and a Support Vector Machine that outperforms the state of the art on two public food/non-food datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ng, M., et al.: Global, regional, and national prevalence of overweight and obesity in children and adults during 1980–2013: a systematic analysis for the global burden of disease study 2013. Lancet 384, 766–781 (2014)

    Article  Google Scholar 

  2. World Health Organization: Diet, nutrition and the prevention of chronic diseases. WHO Technical Report Series, vol. 916, p. 149 (2003)

    Google Scholar 

  3. Kagaya, H., Aizawa, K., Ogawa, M.: Food detection and recognition using convolutional neural network. In: ACM Multimedia, pp. 1085–1088 (2014)

    Google Scholar 

  4. Bolaños, M., Radeva, P.: Simultaneous food localization and recognition. In: ICPR (2016)

    Google Scholar 

  5. Myers, A., et al.: Im2Calories: towards an automated mobile vision food diary. In: ICCV (2015)

    Google Scholar 

  6. Singla, A., Yuan, L., Ebrahimi, T.: Food/non-food image classification and food categorization using pre-trained GoogLeNet model. In: Proceedings of the 2nd International Workshop on MADiMa (2016)

    Google Scholar 

  7. Kitamura, K., Yamasaki, T., Aizawa, K.: FoodLog. In: Proceedings of the ACM Multimedia 2009 Workshop on Multimedia for Cooking and Eating Activities (2009)

    Google Scholar 

  8. Farinella, G.M., Allegra, D., Stanco, F., Battiato, S.: On the exploitation of one class classification to distinguish food vs non-food images. In: Murino, V., Puppo, E., Sona, D., Cristani, M., Sansone, C. (eds.) ICIAP 2015. LNCS, vol. 9281, pp. 375–383. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23222-5_46

    Chapter  Google Scholar 

  9. Ragusa, F., et al.: Food vs non-food classification. In: Proceedings of the 2nd International Workshop on MADiMa (2016)

    Google Scholar 

  10. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, vol. 25, p. 19 (2012)

    Google Scholar 

  11. Kagaya, H., Aizawa, K.: Highly accurate food/non-food image classification based on a deep convolutional neural network. In: Murino, V., Puppo, E., Sona, D., Cristani, M., Sansone, C. (eds.) ICIAP 2015. LNCS, vol. 9281, pp. 350–357. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23222-5_43

    Chapter  Google Scholar 

  12. Lin, M., Chen, Q., Yan, S.: Network in network. arXiv Preprint, p. 10 (2013)

    Google Scholar 

  13. Bossard, L., Guillaumin, M., Van Gool, L.: Food-101 – mining discriminative components with random forests. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8694, pp. 446–461. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10599-4_29

    Google Scholar 

  14. Szegedy, C., et al.: Going deeper with convolutions. In: CVPR (2015)

    Google Scholar 

  15. Everingham, M., Van Gool, L., Williams, C.K.I., Winn, J., Zisserman, A.: The pascal visual object classes (VOC) challenge. Int. J. Comput. Vis. 88, 303–338 (2010)

    Article  Google Scholar 

  16. Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20, 273–297 (1995)

    MATH  Google Scholar 

  17. Russakovsky, O., et al.: ImageNet large scale visual recognition challenge. Int. J. Comput. Vis. 115, 211–252 (2015)

    Article  MathSciNet  Google Scholar 

  18. Jollie, I.T.: Principal component analysis. J. Am. Statist. Assoc. 98, 487 (2002)

    MathSciNet  Google Scholar 

  19. Kaiser, H.F.: The application of electronic computers to factor analysis. Edu. Psychol. Measur. 20, 141–151 (1960)

    Article  Google Scholar 

  20. Griffin, G., Holub, A., Perona, P.: Caltech-256 object category dataset. Caltech mimeo 11, 20 (2007)

    Google Scholar 

  21. Farinella, G.M., Allegra, D., Stanco, F.: A benchmark dataset to study the representation of food images. In: Agapito, L., Bronstein, M.M., Rother, C. (eds.) ECCV 2014. LNCS, vol. 8927, pp. 584–599. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-16199-0_41

    Google Scholar 

  22. Jia, Y. et al.: Caffe: convolutional architecture for fast feature embedding. arXiv Preprint (2014)

    Google Scholar 

Download references

Acknowledgement

This work was partially funded by TIN2015-66951-C2, SGR 1219, CERCA, ICREA Academia’2014, CONICYT Becas Chile, FPU15/01347 and Grant 20141510 (Marató TV3). The funders had no role in the study design, data collection, analysis, and preparation of the manuscript. We acknowledge Nvidia Corporation for the donation of a Titan X GPU.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduardo Aguilar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Aguilar, E., Bolaños, M., Radeva, P. (2018). Exploring Food Detection Using CNNs. In: Moreno-Díaz, R., Pichler, F., Quesada-Arencibia, A. (eds) Computer Aided Systems Theory – EUROCAST 2017. EUROCAST 2017. Lecture Notes in Computer Science(), vol 10672. Springer, Cham. https://doi.org/10.1007/978-3-319-74727-9_40

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-74727-9_40

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-74726-2

  • Online ISBN: 978-3-319-74727-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics