Skip to main content

Abstract

In this chapter we present WALK-MAN, a humanoid platform that has been developed to operate in realistic unstructured environments and demonstrate new skills including powerful manipulation, robust balanced locomotion, high strength capabilities and physical sturdiness. To enable these capabilities, WALK-MAN design and actuation are based on the most recent advancements of Series Elastic Actuation (SEA) drives with unique performance features that differentiate the robot from previous state-of-the-art compliant actuated robots. Physical interaction performance benefits from both active and passive adaptation thanks to WALK-MAN actuation, which combines customized high performance modules with tuned torque/velocity curves and transmission elasticity for high speed adaptation response and motion reactions to disturbances. The WALK-MAN design also includes innovative design optimization features that consider the selection of kinematic structure and the placement of the actuators with respect to the body structure to maximize the robot performance. Physical robustness is ensured with the integration of elastic transmission, proprioceptive sensing and control. WALK-MAN hardware was designed and built in 11 months, and the prototype of the robot was ready 4 months before the DARPA Robotics Challenge (DRC) Finals. The motion generation of WALK-MAN is based on the unified motion generation framework of whole-body locomotion and manipulation (termed loco-manipulation). WALK-MAN is able to execute simple loco-manipulation behaviours synthesized by combining different primitives defining the behaviour of the center of gravity, of the hands, legs and head, the body attitude and posture, and the constrained body parts such as joint limits and contacts. The motion generation framework including the specific motion modules and software architecture are discussed in detail. A rich perception system allows the robot to perceive and generate 3D representations of the environment as well as detect contacts and sense physical interaction force and moments. The operator station that pilots use to control the robot provides a rich pilot interface with different control modes and a number of tele-operated or semi-autonomous command features. The capability of the robot and the performance of the individual motion control and perception modules were validated during the DARPA Robotics Challenge in which the robot was able to demonstrate exceptional physical resilience and execute some of the tasks during the competition.

A version of this article was previously published in the Journal of Field Robotics, vol. 34, issue 7, pp. 1225–1259, ©Wiley 2017.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://www.qt.io.

  2. 2.

    http://wiki.ros.org/rviz.

  3. 3.

    The OpenSoT library is open-source and downloadable at https://github.com/robotology-playground/OpenSoT.

  4. 4.

    The video of the simulation can be viewed at https://www.youtube.com/watch?v=68EiRU2am4Q&index=1&list=PLX9AXAMf3RudDz_dKkzw_PldCs-scVqZ_.

References

  • Akachi, K., Kaneko, K., Ota, S., Miyamori, G., Mirata, M., Kajita, S., et al. (2005). Development of humanoid robot HRP-3p. In IEEE-RAS International Conference on Humanoid Robots (pp. 50–55).

    Google Scholar 

  • Bagheri, M., Ajoudani, A., Lee, J., Caldwell, D. G., & Tsagarakis, N. G. (2015). Kinematic analysis and design considerations for optimal base frame arrangement of humanoid shoulders. In IEEE International Conference on Robotics and Automation (ICRA), Seattle, USA (pp. 2710–2715).

    Google Scholar 

  • Catalano, M. G., Grioli, G., Farnioli, E., Serio, A., Piazza, C., & Bicchi, A. (2014). Adaptive synergies for the design and control of the Pisa/IIT SoftHand. International Journal of Robotics Research, 33, 768–782.

    Article  Google Scholar 

  • Chiacchio, P., Chiaverini, S., Sciavicco, L., & Siciliano, B. (1991). Closed-loop inverse kinematics schemes for constrained redundant manipulators with task space augmentation and task priority strategy. The International Journal of Robotics Research, 10(4), 410–425.

    Article  Google Scholar 

  • De Schutter, J., De Laet, T., Rutgeerts, J., Decré, W., Smits, R., Aertbeliën, E., et al. (2007). Constraint-based task specification and estimation for sensor-based robot systems in the presence of geometric uncertainty. The International Journal of Robotics Research, 26(5), 433–455.

    Article  Google Scholar 

  • Englsberger, J., Werner, A., Ott, C., Henze, B., Roa, M. A., Garofalo, G., et al. (2014). Overview of the torque-controlled humanoid robot toro. In IEEE-RAS International Conference on Humanoid Robots (pp. 916–923).

    Google Scholar 

  • Escande, A., Mansard, N., & Wieber, P.-B. (2014). Hierarchical quadratic programming: Fast online humanoid-robot motion generation. The International Journal of Robotics Research, 33(7), 1006–1028.

    Article  Google Scholar 

  • Fang, C., Rocchi, A., Mingo Hoffman, E., Tsagarakis, N. G., & Caldwell, D. G. (2015). Efficient self-collision avoidance based on focus of interest for humanoid robots. In 2015 IEEE-RAS 15th International Conference on Humanoid Robots (Humanoids) (pp. 1060–1066).

    Google Scholar 

  • Ferreau, H. J., Kirches, C., Potschka, A., Bock, H. G., & Diehl, M. (2014). qpOASES: A parametric active-set algorithm for quadratic programming. Mathematical Programming Computation, 6(4), 327–363.

    Article  MathSciNet  Google Scholar 

  • Fischler, M. A., & Bolles, R. C. (1981). Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography. Communications of the ACM, 24(6), 381–395.

    Article  MathSciNet  Google Scholar 

  • Fok, C.-L., & Sentis, L. (2016). Integration and usage of a ROS-based whole body control software framework. In Robot Operating System (ROS), Studies in Computational Intelligence (pp. 535–563). Springer International Publishing.

    Google Scholar 

  • Herzog, A., Righetti, L., Grimminger, F., Pastor, P., & Schaal, S. (2014). Balancing experiments on a torque-controlled humanoid with hierarchical inverse dynamics. In Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS‘14) (pp. 981–988).

    Google Scholar 

  • Hirai, K., Hirose, Y., Haikawa, Y., & Takenaka, T. (1998). The development of Honda humanoid robot. In IEEE ICRA (pp. 1321–1326).

    Google Scholar 

  • Hirose, M., & Ogawa, K. (2007). Honda humanoid robots development. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 11–19.

    Article  Google Scholar 

  • Ito, Y., Nakaoka, T., Urata, J., Nakanishi, Y., Okada, K., & Inaba, M. (2012). Design and development of a tendon-driven and axial-driven hybrid humanoid leg with high-power motor driving system. In Proceedings of 2012 12th IEEE-RAS International Conference on Humanoid Robots (Humanoids) (pp. 475–480).

    Google Scholar 

  • Kajita, S., Kanehiro, F., Kaneko, K., Fujiwara, K., & Yokoi, K. H. K. (2003). Biped walking pattern generation by using preview control of zero-moment point. In IEEE International Conference on Robotics and Automation (ICRA) (pp. 1620–1626).

    Google Scholar 

  • Kaneko, K., Harada, K., Kanehiro, F., Miyamori, G., & Akachi, K. (2008). Humanoid robot HRP-3. In IEEE IROS (pp. 2471–2478).

    Google Scholar 

  • Kanoulas, D. (2014). Curved surface patches for rough terrain perception. Ph.D. thesis, CCIS, Northeastern University.

    Google Scholar 

  • Kanoulas, D., & Vona, M. (2013). Sparse surface modeling with curved patches. In Proceedings of the IEEE ICRA (pp. 4209–4215).

    Google Scholar 

  • Kanoulas, D., & Vona, M. (2014a). Bio-inspired rough terrain contact patch perception. In Proceedings of the IEEE ICRA (pp. 1719–1724).

    Google Scholar 

  • Kanoulas, D., & Vona, M. (2014b). The surface patch library (SPL). In The 2014 IEEE ICRA Workshop: MATLAB/Simulink for Robotics Education and Research. http://ccis.neu.edu/research/gpc/spl.

  • Kanoun, O., Lamiraux, F., & Wieber, P.-B. (2011). Kinematic control of redundant manipulators: Generalizing the task-priority framework to inequality task. IEEE Transactions on Robotics, 27(4), 785–792.

    Article  Google Scholar 

  • Khatib, O. (1987). A unified approach for motion and force control of robot manipulators: The operational space formulation. IEEE Transactions on Robotics and Automation, 3(1), 43–53.

    Article  Google Scholar 

  • Laffranchi, M., Tsagarakis, N. G., Cannella, F., & Caldwell, D. G. (2009). Antagonistic and series elastic actuators: A comparative analysis on the energy consumption. In 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems (pp. 5678–5684). IEEE.

    Google Scholar 

  • Lohmeier, S., Buschmann, T., Ulbrich, H., & Pfeiffer, F. (2006). Modular joint design for performance enhanced humanoid robot LOLA. In IEEE ICRA (pp. 88–93).

    Google Scholar 

  • Madgwick, S. O. (2010). An efficient orientation filter for inertial and inertial/magnetic sensor arrays. Report x-io and University of Bristol (UK).

    Google Scholar 

  • Mansard, N., Stasse, O., Evrard, P., & Kheddar, A. (2009). A versatile generalized inverted kinematics implementation for collaborative working humanoid robots: The stack of tasks. In International Conference on Advanced Robotics, 2009 (ICAR 2009) (pp. 1–6).

    Google Scholar 

  • Metta, G., Fitzpatrick, P., & Natale, L. (2006). YARP: Yet another robot platform. International Journal on Advanced Robotics Systems, 3(1), 43–48.

    Article  Google Scholar 

  • Mingo Hoffman, E., Rocchi, A., Tsagarakis, N. G., & Caldwell, D. G. (2016). Robot dynamics constraint for inverse kinematics. In International Symposium on Advances in Robot Kinematics, ARK Grasse, France, June 27–June 30, 2016.

    Google Scholar 

  • Nagasaka, K., Inaba, M., & Inoue, H. (1999). Stabilization of dynamic walk on a humanoid using torso position compliance control (in Japanese). In Proceedings of 17th Annual Conference of the Robotics Society of Japan (pp. 1193–1194).

    Google Scholar 

  • Nakamura, Y. (1990). Advanced robotics: Redundancy and optimization (1st ed.). Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc.

    Google Scholar 

  • Nakamura, Y., & Hanafusa, H. (1987). Optimal redundancy control of robot manipulators. The International Journal of Robotics Research, 6(1), 32–42.

    Article  Google Scholar 

  • Nakamura, Y., Hanafusa, H., & Yoshikawa, T. (1987). Task-priority based redundancy control of robot manipulators. The International Journal of Robotics Research, 6(2), 3–15.

    Article  Google Scholar 

  • Nakanishi, J., Cory, R., Mistry, M., Peters, J., & Schaal, S. (2008). Operational space control: A theoretical and empirical comparison. The International Journal of Robotics Research, 27(6), 737–757.

    Article  Google Scholar 

  • Negrello, F., Garabini, M., Catalano, M., Malzahn, J., Caldwell, D., Bicchi, A., et al. (2015). A modular compliant actuator for emerging high performance and fall-resilient humanoids. In IEEE-RAS International Conference on Humanoid Robots (pp. 414–420).

    Google Scholar 

  • Negrello, F., Garabini, M., Catalano, M. G., Kryczka, P., Choi, W., Caldwell, D. G., et al. (2016). Walk-man humanoid lower body design optimization for enhanced physical performance. In 2016 IEEE International Conference on Robotics and Automation (ICRA) (pp. 1817–1824). IEEE.

    Google Scholar 

  • Ogura, Y., Aikawa, H., Shimomura, A., Morishima, A., Lim, H., & Takanishi, A. (2006). Development of a new humanoid robot WABIAN-2. In IEEE ICRA (pp. 76–81).

    Google Scholar 

  • Olson, E. (2011). AprilTag: A robust and flexible visual fiducial system. In 2011 IEEE ICRA (pp. 3400–3407).

    Google Scholar 

  • Paine, N., Mehling, J. S., Holley, J., Radford, N. A., Johnson, G., Fok, C.-L., et al. (2015). Actuator control for the NASA-JSC Valkyrie humanoid robot: A decoupled dynamics approach for torque control of series elastic robots. Journal of Field Robotics, 32(3), 378–396.

    Article  Google Scholar 

  • Paris, S., & Durand, F. (2009). A fast approximation of the bilateral filter using a signal processing approach. International Journal of Computer Vision, 81(1), 24–52.

    Article  Google Scholar 

  • Park, I., Kim, J., & Oh, J. (2007). Mechanical design of the humanoid robot platform HUBO. Journal of Advanced Robotics, 21(11), 1305–1322.

    Article  Google Scholar 

  • Parmiggiani, A., Maggiali, M., Natale, L., Nori, F., Schmitz, A., Tsagarakis, N., et al. (2012). The design of the ICub humanoid robot. International Journal of Humanoid Robotics, 9(04), 1250027.

    Article  Google Scholar 

  • Pratt, G., & Williamson, M. (1995). Series elastic actuators. In IEEE IROS (pp. 399–406).

    Google Scholar 

  • Pratt, J., Koolen, T., De Boer, T., Rebula, J., Cotton, S., Carff, J., et al. (2012). Capturability-based analysis and control of legged locomotion, Part 2: Application to m2v2, a lower-body humanoid. International Journal of Robotics Research, 31, 1117–1133.

    Article  Google Scholar 

  • Rocchi, A., Hoffman, E. M., Caldwell, D. G., & Tsagarakis, N. G. (2015). Opensot: A whole-body control library for the compliant humanoid robot coman. In 2015 IEEE International Conference on Robotics and Automation (ICRA) (pp. 1093–1099).

    Google Scholar 

  • Roozing, W., Li, Z., Medrano-Cerda, G. A., Caldwell, D. G., & Tsagarakis, N. G. (2016). Development and control of a compliant asymmetric antagonistic actuator for energy efficient mobility. IEEE/ASME Transactions on Mechatronics, 21(2), 1080–1091.

    Article  Google Scholar 

  • Roth, H. & Vona, M. (2012). Moving volume KinectFusion. In British Machine Vision Conference (BMVC) (pp. 1–11).

    Google Scholar 

  • Rusu, R. B., Blodow, N., & Beetz, M. (2009). Fast point feature histograms (FPFH) for 3D registration. In Proceedings of the International Conference on Robotics and Automation (ICRA) (pp. 3212–3217).

    Google Scholar 

  • Rusu, R. B. & Cousins, S. (2011). 3D is here: Point cloud library (PCL). In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), (pp. 1–4), Shanghai, China.

    Google Scholar 

  • Saab, L., Ramos, O., Keith, F., Mansard, N., Soueres, P., & Fourquet, J. (2013). Dynamic whole-body motion generation under rigid contacts and other unilateral constraints. IEEE Transactions on Robotics, 29(2), 346–362.

    Article  Google Scholar 

  • Sentis, L., Park, J., & Khatib, O. (2010). Compliant control of multicontact and center-of-mass behaviors in humanoid robots. IEEE Transactions on Robotics, 26(3), 483–501.

    Article  Google Scholar 

  • Sentis, L., Petersen, J., & Philippsen, R. (2013). Implementation and stability analysis of prioritized whole-body compliant controllers on a wheeled humanoid robot in uneven terrains. Autonomous Robots, 35(4), 301–319.

    Article  Google Scholar 

  • Settimi, A., Pavan, C., Varricchio, V., Ferrati, M., Hoffman, E. M., Rocchi, A., et al. (2014). A modular approach for remote operation of humanoid robots in search and rescue scenarios, 8906, 192.

    Google Scholar 

  • Siciliano, B., Sciavicco, L., Villani, L., & Oriolo, G. (2008). Robotics: Modelling, planning and control (1st ed.). Springer Publishing Company, Inc.

    Google Scholar 

  • Siciliano, B., & Slotine, J.-J. E. (1991). A general framework for managing multiple tasks in highly redundant robotic systems. In Fifth International Conference on Advanced Robotics, 1991 (91 ICAR). Robots in Unstructured Environments (pp. 1211–1216). IEEE.

    Google Scholar 

  • Trevor, A. J., Gedikli, S., Rusu, R. B., & Christensen, H. I. (2013). Efficient organized point cloud segmentation with connected components. Semantic Perception Mapping and Exploration (SPME).

    Google Scholar 

  • Tsagarakis, N., Metta, G., Sandini, G., Vernon, D., Beira, R., Becchi, F., et al. (2007). ICub—The design and realization of an open humanoid platform for cognitive and neuroscience research. Journal of Advanced Robotics, Special Issue on Robotic platforms for Research in Neuroscience, 21(10), 1151–1175.

    Article  Google Scholar 

  • Tsagarakis, N., Li, Z., Saglia, J., & Caldwell, D. G. (2011). The design of the lower body of the compliant humanoid robot cCub. In IEEE ICRA (pp. 2035–2040).

    Google Scholar 

  • Tsagarakis, N. G., Cerda, G. M., Li, Z., & Caldwell, D. G. (2013a). Compliant humanoid coman: Optimal joint stiffness tuning for modal frequency control. In ICRA (pp. 665–670).

    Google Scholar 

  • Tsagarakis, N. G., Morfey, S., Dallali, H., Medrano-Cerda, G. A., & Caldwell, D. G. (2013b). An asymmetric compliant antagonistic joint design for high performance mobility. In 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (pp. 5512–5517). IEEE.

    Google Scholar 

  • Tsagarakis, N. G., Dallali, H., Negrello, F., Roozing, W., Medrano-Cerda, G. A., & Caldwell, D. G. (2014). Compliant antagonistic joint tuning for gravitational load cancellation and improved efficient mobility. In 2014 14th IEEE-RAS International Conference on Humanoid Robots (Humanoids) (pp. 924–929). IEEE.

    Google Scholar 

  • Vona, M., & Kanoulas, D. (2011). Curved surface contact patches with quantified uncertainty. In IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (pp. 1439–1446).

    Google Scholar 

Download references

Acknowledgements

The development of the WALK-MAN platform is supported by the WALK-MAN FP7-ICT-2013-10 European Commission project. This work would not have been possible without the major support from the Italian Institute of Technology and the University of Pisa and the great talent skills and incredible commitment and passion of all members of WALK-MAN team.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. G. Tsagarakis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tsagarakis, N.G. et al. (2018). WALK-MAN Humanoid Platform. In: Spenko, M., Buerger, S., Iagnemma, K. (eds) The DARPA Robotics Challenge Finals: Humanoid Robots To The Rescue. Springer Tracts in Advanced Robotics, vol 121. Springer, Cham. https://doi.org/10.1007/978-3-319-74666-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-74666-1_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-74665-4

  • Online ISBN: 978-3-319-74666-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics