Skip to main content

Managing Bone Fragility in the Child with Cerebral Palsy

  • Reference work entry
  • First Online:
Cerebral Palsy

Abstract

Skeletal health during the childhood years has a direct effect on lifetime risk of osteoporosis and bone fragility. Children with cerebral palsy (CP) frequently have comorbidities that influence bone development and health. With increased severity of the CP, there are greater systemic effects on body systems and commensurate deleterious effects on bone. These comorbidities may include nutritional deficiencies, limited or no weight bearing, use of various medications that affect bone, and lack of exposure to sunlight. The presence of these comorbidities has a direct effect on bone health, which results in decreased bone mineral density and puts many of these children at risk for fragility fractures. In this chapter, we will review the natural history of CP and the basics of bone formation, discuss assessment of bone health for children with CP including measurement of bone density, and present current treatment practices for children with compromised bone health.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Bachrach SJ, Kecskemethy HH, Harcke HT, Lark RK, Miller F, Henderson RC (2006) Pamidronate treatment and posttreatment bone density in children with spastic quadriplegic cerebral palsy. J Clin Densitom 9(2):167–174

    Google Scholar 

  • Bachrach SJ, Kecskemethy HH, Harcke HT, Hossain J (2010) Decreased fracture incidence after 1 year of pamidronate treatment in children with spastic quadriplegic cerebral palsy. Dev Med Child Neurol 52(9):837–842. https://doi.org/10.1111/j.1469-8749.2010.03676.x

    Article  Google Scholar 

  • Banta JV, Lubicky JP, Lonstein JE (1998) Resolution: a 15-year-old with spastic quadriplegia and a 60 degree scoliosis should have a posterior spinal fusion with instrumentation. The American Academy for Cerebral Palsy and Developmental Medicine 50th anniversary meeting debate. Dev Med Child Neurol 40(4):278–283

    CAS  Google Scholar 

  • Beerhorst K, van der Kruijs SJ, Verschuure P, Tan IY, Aldenkamp AP (2013) Bone disease during chronic antiepileptic drug therapy: general versus specific risk factors. J Neurol Sci 331(1–2):19–25. https://doi.org/10.1016/j.jns.2013.05.005

    Article  CAS  Google Scholar 

  • Binkley T, Johnson J, Vogel L, Kecskemethy H, Henderson R, Specker B (2005) Bone measurements by peripheral quantitative computed tomography (pQCT) in children with cerebral palsy. J Pediatr 147(6):791–796

    Google Scholar 

  • Black RE, Williams SM, Jones IE, Goulding A (2002) Children who avoid drinking cow milk have low dietary calcium intakes and poor bone health. Am J Clin Nutr 76(3):675–680

    CAS  Google Scholar 

  • Bonjour JP, Theintz G, Buchs B, Slosman D, Rizzoli R (1991) Critical years and stages of puberty for spinal and femoral bone mass accumulation during adolescence. J Clin Endocrinol Metab 73(3):555–563

    CAS  Google Scholar 

  • Boyce AM, Collins MT, Tosi LL, Gafni RI (2017) A subtrochanteric femoral stress fracture following bisphosphonate treatment in an adolescent girl. Horm Res Paediatr 87(1):69–72

    CAS  Google Scholar 

  • Carpintero P, Del Fresno JA, Ruiz-Sanz J, Jaenal P (2015) Atypical fracture in a child with osteogenesis imperfecta. Joint Bone Spine 82(4):287–288

    Google Scholar 

  • Cattran AM, Kalkwarf HJ, Pinney SM, Huang B, Biro FM (2015) Bone density and timing of puberty in a longitudinal study of girls. J Pediatr Adolesc Gynecol 28(3):170–172. https://doi.org/10.1016/j.jpag.2014.07.003. Epub 2014 Jul 19

    Article  Google Scholar 

  • Chad KE, Bailey DA, McKay HA, Zello GA, Snyder RE (1999) The effect of a weight-bearing physical activity program on bone mineral content and estimated volumetric density in children with spastic cerebral palsy. J Pediatr 135(1):115–117

    CAS  Google Scholar 

  • Chapuy MC, Preziosi P, Maamer M, Arnaud S, Galan P, Hercberg S, Meunier PJ (1997) Prevalence of vitamin D insufficiency in an adult normal population. Osteoporos Int 7(5):439–443

    CAS  Google Scholar 

  • Crabtree NJ, Arabi A, Bachrach LK, Fewtrell M, El-Hajj Fuleihan G, Kecskemethy HH, Jaworski M, Gordon C (2014) Dual-energy X-ray absorptiometry interpretation and reporting in children and adolescents: the revised 2013 ISCD official pediatric positions. J Clin Densitom 17(2):225–242

    Google Scholar 

  • Davidge Pitts CJ, Kearns AE (2011) Update on medications with adverse skeletal effects. Mayo Clin Proc 86(4):338–343. https://doi.org/10.4065/mcp.2010.0636

    Article  Google Scholar 

  • Dhillon N, Högler W (2011) Fractures and Fanconi syndrome due to prolonged sodium valproate use. Neuropediatrics 42(3):119–121. https://doi.org/10.1055/s-0031-1279783. Epub 2011 Jun 29

    Article  CAS  Google Scholar 

  • DiMeglio LA, Peacock M (2006) Two-year clinical trial of oral alendronate versus intravenous pamidronate in children with osteogenesis imperfecta. J Bone Miner Res 21(1):132–140

    Google Scholar 

  • Dorn LD, Beal SJ, Kalkwarf HJ, Pabst S, Noll JG, Susman EJ (2013) Longitudinal impact of substance use and depressive symptoms on bone accrual among girls aged 11–19 years. J Adolesc Health 52(4):393–399. https://doi.org/10.1016/j.jadohealth.2012.10.005

    Article  Google Scholar 

  • Farr JN, Khosla S, Achenbach SJ, Atkinson EJ, Kirmani S, McCready LK, Melton LF 3rd, Amin S (2014) Diminished bone strength is observed in adult women and women who sustained a mild trauma distal forearm fracture during childhood. J Bone Miner Res 29:2193–2202

    Google Scholar 

  • Feuer AJ, Thai A, Demmer RT, Vogiatzi M (2016) Association of stimulant medication use with bone mass in children and adolescents with attention-deficit/hyperactivity disorder. JAMA Pediatr 170(12):e162804. https://doi.org/10.1001/jamapediatrics.2016.2804. Epub 2016 Dec 5

    Article  Google Scholar 

  • Finkelstein JS, Neer RM, Biller BM, Crawford JD, Klibanski A (1992) Osteopenia in men with a history of delayed puberty. N Engl J Med 326(9):600–604. https://doi.org/10.1056/NEJM1992022073260904

    Article  CAS  Google Scholar 

  • Fox A, Gilbert R (2016) Use of teriparatide in a four year old patient with autosomal dominant hypocalcemia. Arch Dis Child 101(9):e2

    Google Scholar 

  • Frost HM (1987) Bone “mass” and the “mechanostat”: a proposal. Anat Rec 219(1):1–9

    CAS  Google Scholar 

  • Fung EB, Samson-Fang L, Stallings VA, Conaway M, Liptak G, Henderson RC, Worley G, O’Donnell M, Calvert R, Rosenbaum P, Chumlea W, Stevenson RD (2002) Feeding dysfunction is associated with poor growth and health status in children with cerebral palsy. J Am Diet Assoc 102(3):361–373

    Google Scholar 

  • Genant HK, Libanati C, Engelke K, Zanchetta JR, Høiseth A, Yuen CK, Stonkus S, Bolognese MA, Franek E, Fuerst T, Radcliffe HS, McClung MR (2013) Improvements in hip trabecular, subcortical, and cortical density and mass in postmenopausal women with osteoporosis treated with denosumab. Bone 56(2):482–488. https://doi.org/10.1016/j.bone.2013.07.011

    Article  CAS  Google Scholar 

  • George S, Weber DR, Kaplan P, Hummel K, Monk HM, Levine MA (2015) Short-term safety of zoledronic acid in young patients with bone disorders: an extensive institutional experience. J Clin Endocrinol Metab 100(11):4163–4171. https://doi.org/10.1210/jc.2015-2680. Epub 2015 Aug 26

    Article  CAS  Google Scholar 

  • Goulding A, Jones IE, Williams SM, Grant AM, Taylor RW, Manning PJ, Langley J (2005) First fracture is associated with increased risk of new fractures during growth. J Pediatr 146(2):286–288

    Google Scholar 

  • Gusso S, Munns CF, Colle P, Derraik JG, Biggs JB, Cutfield WS, Hofman PL (2016) Effects of whole-body vibration training on physical function, bone and muscle mass in adolescents and young adults with cerebral palsy. Sci Rep 6:22518

    CAS  Google Scholar 

  • Haas RE, Kecskemethy HH, Lopiccolo MA, Hossain J, Dy RT, Bachrach SJ (2012) Lower extremity bone mineral density in children with congenital spinal dysfunction. Dev Med Child Neurol 54(12):1133–1137. https://doi.org/10.1111/j.1469-8749.2012.04420.x

    Article  Google Scholar 

  • Harcke HT, Taylor A, Bachrach S, Miller F, Henderson RC (1998) Lateral femoral scan: an alternative method for assessing bone mineral density in children with cerebral palsy. Pediatr Radiol 28(4):241–246

    CAS  Google Scholar 

  • Harcke HT, Kecskemethy HH, Conklin D, Scavina M, Mackenzie WG, McKay CP (2006) Assessment of bone mineral density in Duchenne’s muscular dystrophy (DMD) using the lateral distal femur. J Clin Neuromuscul Dis 8:1–6

    Google Scholar 

  • Harcke HT, Stevenson KL, Kecskemethy HH, Bachrach S, Grissom LE (2012) Fracture after bisphosphonate treatment in children with cerebral palsy: the role of stress risers. Pediatr Radiol 42(1):76–81. https://doi.org/10.1007/s00247-011-2198-9. Epub 2011 Aug 30

    Article  Google Scholar 

  • Heaney RP, Abrams S, Dawson-Hughes B, Looker A, Marcus R, Matkovic V, Weaver C (2000) Peak bone mass. Osteoporos Int 11(12):985–1009

    CAS  Google Scholar 

  • Henderson RC (1997) Bone density and other possible predictors of fracture risk in children and adolescents with spastic quadriplegia. Dev Med Child Neurol 39(4):224–227

    CAS  Google Scholar 

  • Henderson RC, Lark RK, Gurka MJ, Worley G, Fung EB, Conaway M, Stallings VA, Stevenson RD (2002a) Bone density and metabolism in children and adolescents with moderate to severe cerebral palsy. Pediatrics 110(1 Pt 1):e5

    Google Scholar 

  • Henderson RC, Lark RK, Kecskemethy HH, Miller F, Harcke HT, Bachrach SJ (2002b) Bisphosphonates to treat osteopenia in children with quadriplegic cerebral palsy: a randomized placebo-controlled clinical trial. J Pediatr 141:644–651

    CAS  Google Scholar 

  • Henderson RC, Lark RK, Newman JE, Kecskemethy H, Fung EB, Renner JB, Harcke HT (2002c) Pediatric reference data for dual X-ray absorptiometric measures of normal bone density in the distal femur. AJR Am J Roentgenol 178(2):439–443

    Google Scholar 

  • Henderson RC, Kairalla J, Abbas A, Stevenson RD (2004) Predicting low bone density in children and young adults with quadriplegic cerebral palsy. Dev Med Child Neurol 46:416–419

    Google Scholar 

  • Henderson RC, Gilbert SR, Clement ME, Abbas A, Worley G, Stevenson RD (2005) Altered skeletal maturation in moderate to severe cerebral palsy. Dev Med Child Neurol 47(4):229–236

    Google Scholar 

  • Henderson RC, Berglund LM, May R, Zemel BS, Grossberg RI, Johnson J, Plotkin H, Stevenson RD, Szalay E, Wong B, Kecskemethy HH, Harcke HT (2010) The relationship between fractures and DXA measures of BMD in the distal femur of children and adolescents with cerebral palsy or muscular dystrophy. J Bone Miner Res 25(3):520–526. https://doi.org/10.1359/jbmr.091007

    Article  Google Scholar 

  • Holick MF, Binkley NC, Bischoff-Ferrari HA, Gordon CM, Hanley DA, Heaney RP, Murad MH, Weaver CM, Endocrine Society (2011) Evaluation, treatment, and prevention of vitamin D deficiency: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab 96(7):1911–1930

    CAS  Google Scholar 

  • Hough JP, Boyd RN, Keating JL (2010) Systematic review of interventions for low bone mineral density in children with cerebral palsy. Pediatrics 125(3):e670–e678

    Google Scholar 

  • Hoyer-Kuhn H, Franklin J, Allo G, Kron M, Netzer C, Eysel P, Hero B, Schoenau E, Semler O (2016) Safety and efficacy of denosumab in children with osteogenesis imperfect – a first prospective trial. J Musculoskelet Neuronal Interact 16(1):24–32

    CAS  Google Scholar 

  • Hsiao FY, Hsu WW (2017) Comparative risks for cancer associated with use of calcitonin, bisphosphonates or selective estrogen receptor modulators among osteoporosis patients: a population-based cohort study. Jpn J Clin Oncol 47(10):935–941

    Google Scholar 

  • Hui SL, Slemenda CW, Johnston CC Jr (1990) The contribution of bone loss to postmenopausal osteoporosis. Osteoporos Int 1(1):30–34

    CAS  Google Scholar 

  • Institute of Medicine, Food and Nutrition Board (2010) Dietary reference intakes for calcium and vitamin D. National Academy Press, Washington, DC

    Google Scholar 

  • Ito T, Jensen RT (2010) Association of long-term proton pump inhibitor therapy with bone fractures and effects on absorption of calcium, vitamin B12, iron, and magnesium. Curr Gastroenterol Rep 12(6):448–457. https://doi.org/10.1007/s11894-010-0141-0

    Article  Google Scholar 

  • Jiang Y, Zhao JJ, Mitlak BH, Wang O, Genant HK, Eriksen EF (2003) Recombinant human parathyroid hormone (1-34) [teriparatide] improves both cortical and cancellous bone structure. J Bone Miner Res 18(11):1932–1941

    CAS  Google Scholar 

  • Jones PM (1989) Feeding disorders in children with multiple handicaps. Dev Med Child Neurol 31:404–406

    CAS  Google Scholar 

  • Jones IE, Williams SM, Dow N, Goulding A (2002) How many children remain fracture-free during growth? A longitudinal study of children and adolescents participating in the Dunedin multidisciplinary health and development. Osteoporos Int 13(12):990–995

    CAS  Google Scholar 

  • Kecskemethy HH, Harcke HT (2014) Assessment of bone health in children with disabilities. J Pediatr Rehabil Med 7(2):111–124. https://doi.org/10.3233/PRM-140280

    Article  Google Scholar 

  • Lee JJ, Lyne ED (1990) Pathologic fractures in severely handicapped children and young adults. J Pediatr Orthop 10(4):497–500

    CAS  Google Scholar 

  • Manios Y, Moschonis G, Hulshof T, Bourhis AS, Hull GLJ, Dowling KG, Kiely ME, Cashman KD (2017) Prevalence of vitamin D deficiency and insufficiency among schoolchildren in Greece: the role of sex, degree of urbanisation and seasonality. Br J Nutr 118(7):550–558. Epub 2017 Oct 2

    CAS  Google Scholar 

  • Melton LJ 3rd, Kan SH, Frye MA, Wahner HW, O’Fallon WM, Riggs BL (1989) Epidemiology of vertebral fractures in women. Am J Epidemiol 129(5):1000–1011

    Google Scholar 

  • Mughal MZ (2014) Fractures in children with CP. Curr Osteoporos Rep 12:313–318

    Google Scholar 

  • Ozel S, Switzer L, Macintosh A, Fehlings D (2016) Informing evidence-based clinical practice guidelines for children with cerebral palsy at risk of osteoporosis: an update. Dev Med Child Neurol 58(9):918–923. https://doi.org/10.1111/dmcn.13196. Epub 2016 Jul 20

    Article  Google Scholar 

  • Palisano R, Rosenbaum P, Walter S, Russell D, Wood E, Galuppi B (1997) Development and reliability of a system to classify gross motor function in children with cerebral palsy. Dev Med Child Neurol 39(4):214–223

    CAS  Google Scholar 

  • Pettifor JM (2014) Calcium and vitamin D metabolism in children in developing countries. Ann Nutr Metab 64(Suppl 2):15–22. https://doi.org/10.1159/000365124. Epub 2014 Oct 22

    Article  CAS  Google Scholar 

  • Presedo A, Dabney KW, Miller F (2007) Fractures in patients with cerebral palsy. J Pediatr Orthop 27:147–153

    Google Scholar 

  • Rabenda V, Nicolet D, Beaudart C, Bruyère O, Reginster JY (2013) Relationship between use of antidepressants and risk of fractures: a meta-analysis. Osteoporos Int 24(1):121–137

    CAS  Google Scholar 

  • Rahman M, Berenson AB (2010) Predictors of higher bone mineral density loss and use of depot medroxyprogesterone acetate. Obstet Gynecol 115(1):35–40. https://doi.org/10.1097/AOG.0b013e3181c4e864

    Article  CAS  Google Scholar 

  • Rosenbaum P, Paneth N, Leviton A, Goldstein M, Bax M, Damiano D, Dan B, Jacobsson B (2007) A report: the definition and classification of cerebral palsy April 2006. Dev Med Child Neurol Suppl 109:8–14

    Google Scholar 

  • Rubin C, Turner AS, Bain S, Mallinckrodt C, McLeod K (2001) Anabolism. Low mechanical signals strengthen long bones. Nature 412(6847):603–604

    CAS  Google Scholar 

  • Ruck J, Chabot G, Rauch F (2010) Vibration treatment in cerebral palsy: a randomized control pilot study. J Musculoskelet Neuronal Interact 10(1):77–83

    CAS  Google Scholar 

  • Russell RG, Watts NB, Ebetino FH, Rogers MJ (2008) Mechanisms of action of bisphosphonates: similarities and differences and their potential influence on clinical efficacy. Osteoporos Int 19(6):733–759. https://doi.org/10.1007/s00198-007-0540-8

    Article  CAS  Google Scholar 

  • Saraff V, Rothenbuhler A, Hogler W, Linglart A (2017) Continuous subcutaneous recombinant parathyroid hormone (1–34) infusion in the management of childhood hypoparathyroidism associated with malabsorption. Horm Res Paediatr. https://doi.org/10.1159/000479867. Epub ahead of print

  • Saraff V, Sahota J, Crabtree N, Sakka S, Shaw NJ, Högler W (2018) Efficacy and treatment costs of zoledronate versus pamidronate in paediatric osteoporosis. Arch Dis Child 103(1):92–94. https://doi.org/10.1136/archdischild-2017-313234. Epub 2017 Oct 7

    Article  Google Scholar 

  • Schoenau E, Fricke O (2008) Mechanical influences on bone development in children. Eur J Endocrinol 159(Suppl 1):S27–S31. https://doi.org/10.1530/EJE-08-0312. Epub 2008 Sep 11

    Article  CAS  Google Scholar 

  • Semeao EJ, Jawad AF, Stouffer NO, Zemel BS, Piccoli DA, Stallings VA (1999) Risk factors for low bone mineral density in children and young adults with Crohn’s disease. J Pediatr 135(5):593–600

    CAS  Google Scholar 

  • Shevell MI, Dagenais L, Hall N, REPACQ Consortium (2009) Comorbidities in cerebral palsy and their relationship to neurologic subtype and GMFCS level. Neurology 72(24):2090–2096

    Google Scholar 

  • Simms PJ, Johannesen J, Briody J, McQuade M, Hsu B, Bridge C, Little DG, Cowell CT, Munns CF (2011) Zoledronic acid improves bone mineral density, reduces bone turnover and improves skeletal architecture over 2 years of treatment in children with secondary osteoporosis. Bone 49(5):939–943

    Google Scholar 

  • Stevenson RD, Conaway M, Barrington JW, Cuthill SL, Worley G, Henderson RC (2006) Fracture rate in children with cerebral palsy. Pediatr Rehabil 9(4):396–403

    Google Scholar 

  • Subbiah V, Madsen VS, Raymond AK, Benjamin RS, Ludwig JA (2010) Of mice and men: divergent risks of teriparatide-induced osteosarcoma. Osteoporos Int 21(6):1041–1045. https://doi.org/10.1007/s00198-009-1004-0. Epub 2009 Jul 14

    Article  CAS  Google Scholar 

  • Trejo P, Fassier F, Glorieux FH, Rauch F (2017) Diaphyseal femur fractures in osteogenesis imperfecta: characteristics and relationship with bisphosphonate treatment. J Bone Mineral Res 32(5):1034–1039

    CAS  Google Scholar 

  • Tucker KL, Morita K, Qiao N, Hannan MT, Cupples LA, Kiel DP (2006) Colas, but not other carbonated beverages, are associated with low bone mineral density in older women: the Framingham osteoporosis study. Am J Clin Nutr 84(4):936–942

    CAS  Google Scholar 

  • Uddenfeldt Wort U, Nordmark E, Wagner P, Düppe H, Westbom L (2013) Fractures in children with cerebral palsy – a total population study. Dev Med Child Neurol 55(9):821–826. https://doi.org/10.1111/dmcn.12178

    Article  Google Scholar 

  • van de Laarschot DM, Zillikens MC (2016) Atypical femur fracture in an adolescent boy treated with bisphosphonates for X-linked osteoporosis based on PLS3 mutation. Bone 91(Oct):148–151

    Google Scholar 

  • Vasanwala RF, Sanghrajka A, Bishop NJ, Högler W (2016) Recurrent proximal femur fractures in a teenager with osteogenesis imperfecta on continuous bisphosphonate therapy: are we overtreating? J Bone Miner Res 31(7): 1449–1454

    CAS  Google Scholar 

  • Ward KA, Adams JE, Freemont TJ, Mughal MZ (2007) Can bisphosphonate treatment be stopped in a growing child with skeletal fragility? Osteoporos Int 18(8): 1137–1140. Epub 2007 Feb 6

    CAS  Google Scholar 

  • Wasilewski-Masker K, Kaste SC, Hudson MM, Esiashvili N, Mattano LA, Meacham LR (2008) Bone mineral density deficits in survivors of childhood cancer: long-term follow-up guidelines and review of the literature. Pediatrics 121(3):e705–e713. https://doi.org/10.1542/peds.2007-1396

    Article  Google Scholar 

  • Waterman ET, Koltai PJ, Downey JC, Cacace AT (1992) Swallowing disorders in a population of children with cerebral palsy. Int J Pediatr Otorhinolaryngol 24(1):63–71

    CAS  Google Scholar 

  • Woo SB, Hellstein JW, Kalmar JR (2006) Narrative [corrected] review: bisphosphonates and osteonecrosis of the jaws. Ann Intern Med 144(10):753–761

    CAS  Google Scholar 

  • Worley G, Houlihan CM, Herman-Giddens ME, O’Donnell ME, Conaway M, Stallings VA, Chumlea WC, Henderson RC, Fung EB, Rosenbaum PL, Samson-Fang L, Liptak GS, Calvert RE, Stevenson RD (2002) Secondary sexual characteristics in children with cerebral palsy and moderate to severe motor impairment: a cross-sectional survey. Pediatrics 110(5):897–902

    Google Scholar 

  • Wren TA, Lee DC, Hara R, Rethlefsen SA, Kay RM, Dorey FJ, Gilsanz V (2010) Effect of high-frequency, low-magnitude vibration on bone and muscle in children with cerebral palsy. J Pediatr Orthop 30(7): 732–738

    Google Scholar 

  • Wren TA, Lee DC, Kay RM, Dorey FJ, Gilsanz V (2011) Bone density and size in ambulatory children with cerebral palsy. Dev Med Child Neurol 53(2):137–141

    Google Scholar 

  • Zemel BS, Stallings VA, Leonard MB, Paulhamus DR, Kecskemethy HH, Harcke HT, Henderson RC (2009) Revised pediatric reference data for the lateral distal femur measured by Hologic discovery/Delphi dual-energy X-ray absorptiometry. J Clin Densitom 12(2):207–218. https://doi.org/10.1016/j.jocd.2009.01.005

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heidi H. Kecskemethy .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Kecskemethy, H.H., Bachrach, S. (2020). Managing Bone Fragility in the Child with Cerebral Palsy. In: Miller, F., Bachrach, S., Lennon, N., O'Neil, M.E. (eds) Cerebral Palsy. Springer, Cham. https://doi.org/10.1007/978-3-319-74558-9_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-74558-9_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-74557-2

  • Online ISBN: 978-3-319-74558-9

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics