Skip to main content

Bone Size, Architecture, and Strength Deficits in Cerebral Palsy

  • Reference work entry
  • First Online:
Cerebral Palsy

Abstract

Childhood and adolescence are the most important periods of bone development. The bones experience an increase in size, an accretion of mineral, a change in architecture, and an increase in strength that accommodate greater strains on the skeleton due to the increasing weight of the growing body and the increasing muscle forces produced during physical activity. Children with cerebral palsy (CP) tend to have smaller bones, lower areal bone mineral density, and less developed bone architecture compared to typically developing children, which contributes to their much weaker bones and higher risk for fracture. In this chapter, we will review how deficits in bone that emerge during the growth and development of children with CP contribute to their high rate of fragility fractures. We will also review methods of bone assessment, factors that contribute to the poor bone development in children and adolescents with CP, bone health in adults with CP, and potential treatment strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Augat P, Schorlemmer S (2006) The role of cortical bone and its microstructure in bone strength. Age Ageing 35:27–31

    Google Scholar 

  • Bachrach SJ, Kecskemethy HH, Harcke HT, Hossain J (2010) Decreased fracture incidence after 1 year of pamidronate treatment in children with spastic quadriplegic cerebral palsy. Dev Med Child Neurol 52(9):837–842

    Google Scholar 

  • Bajaj D, Allerton BM, Kirby JT, Miller F, Rowe DA, Pohlig RT, Modlesky CM (2015) Muscle volume is related to trabecular and cortical bone architecture in typically developing children. Bone 81:217–227

    Google Scholar 

  • Bandholm T, Magnusson P, Jensen BR, Sonne-Holm S (2009) Dorsiflexor muscle-group thickness in children with cerebral palsy: relation to cross-sectional area. NeuroRehabilitation 24(4):299–306

    Google Scholar 

  • Beck TJ (2007) Extending DXA beyond bone mineral density: understanding hip structure analysis. Curr Osteoporos Rep 5(2):49–55

    Google Scholar 

  • Binkley T, Johnson J, Vogel L, Kecskemethy H, Henderson R, Specker B (2005) Bone measurements by peripheral quantitative computed tomography (pQCT) in children with cerebral palsy. J Pediatr 147(6):791–796

    Google Scholar 

  • Bjornson KF, Belza B, Kartin D, Logsdon R, Mclaughlin JF (2007) Ambulatory physical activity performance in youth with cerebral palsy and youth who are developing typically. Phys Ther 87(3):248–257

    Google Scholar 

  • Bonewald LF, Johnson ML (2008) Osteocytes, mechanosensing and Wnt signaling. Bone 42(4):606–615

    CAS  Google Scholar 

  • Bousson V, Bras A, Roqueplan F, Kang Y, Mitton D, Kolta S, Bergot C, Skalli W, Vicaut E, Kalender W, Engelke K, Laredo JD (2006) Volumetric quantitative computed tomography of the proximal femur: relationships linking geometric and densitometric variables to bone strength. Role for compact bone. Osteoporosis Int 17(6):855–864

    CAS  Google Scholar 

  • Bousson V, Bergot C, Sutter B, Levitz P, Cortet B, Grio (2012) Trabecular bone score (TBS): available knowledge, clinical relevance, and future prospects. Osteoporosis Int 23(5):1489–1501

    CAS  Google Scholar 

  • Boutroy S, Bouxsein ML, Munoz F, Delmas PD (2005) In vivo assessment of trabecular bone microarchitecture by high-resolution peripheral quantitative computed tomography. J Clin Endocr Metab 90(12):6508–6515

    CAS  Google Scholar 

  • Bronner F (2009) Recent developments in intestinal calcium absorption. Nutr Rev 67(2):109–113

    Google Scholar 

  • Brooks JC, Strauss DJ, Shavelle RM, Tran LM, Rosenbloom L, Wu YW (2014) Recent trends in cerebral palsy survival. Part II: individual survival prognosis. Dev Med Child Neurol 56(11):1065–1071

    Google Scholar 

  • Burr DB (1997) Muscle strength, bone mass, and age-related bone loss. J Bone Miner Res 12(10):1547–1551

    CAS  Google Scholar 

  • Caulton JM, Ward KA, Alsop CW, Dunn G, Adams JE, Mughal MZ (2004) A randomised controlled trial of standing programme on bone mineral density in non-ambulant children with cerebral palsy. Arch Dis Child 89(2):131–135

    CAS  Google Scholar 

  • Chad KE, Bailey DA, Mckay HA, Zello GA, Snyder RE (1999) The effect of a weight-bearing physical activity program on bone mineral content and estimated volumetric density in children with spastic cerebral palsy. J Pediatr 135(1):115–117

    CAS  Google Scholar 

  • Cianferotti L, Brandi ML (2014) Muscle-bone interactions: basic and clinical aspects. Endocrine 45(2):165–177

    CAS  Google Scholar 

  • Ciarelli TE, Fyhrie DP, Schaffler MB, Goldstein SA (2000) Variations in three-dimensional cancellous bone architecture of the proximal femur in female hip fractures and in controls. J Bone Miner Res 15(1):32–40

    CAS  Google Scholar 

  • Cowin S, Weinbaum S, Zeng Y (1995) A case for bone canaliculi as the anatomical site of strain generated potentials. J Biomech 28(11):1281–1297

    CAS  Google Scholar 

  • Dempster DW (2000) The contribution of trabecular architecture to cancellous bone quality [editorial]. J Bone Miner Res 15(1):20–23

    CAS  Google Scholar 

  • Duncan RL, Turner CH (1995) Mechanotransduction and the functional-response of bone to mechanical strain. Calcified Tissue Int 57(5):344–358

    CAS  Google Scholar 

  • Elder GCB, Kirk J, Stewart G, Cook K, Weir D, Marshall A, Leahey L (2003) Contributing factors to muscle weakness in children with cerebral palsy. Dev Med Child Neurol 45(8):542–550

    Google Scholar 

  • Englander ZA, Sun J, Case L, Mikati MA, Kurtzberg J, Song AW (2015) Brain structural connectivity increases concurrent with functional improvement: evidence from diffusion tensor MRI in children with cerebral palsy during therapy. Neuroimage-Clin 7:315–324

    Google Scholar 

  • Fehlings D, Switzer L, Agarwal P, Wong C, Sochett E, Stevenson R, Sonnenberg L, Smile S, Young E, Huber J, Milo-Manson G, Abu Kuwaik G, Gaebler D (2012) Informing evidence-based clinical practice guidelines for children with cerebral palsy at risk of osteoporosis: a systematic review. Dev Med Child Neurol 54(2):106–116

    Google Scholar 

  • Ferdjallah M, Harris GF, Smith P, Wertsch JJ (2002) Analysis of postural control synergies during quiet standing in healthy children and children with cerebral palsy. Clin Biomech 17(3):203–210

    Google Scholar 

  • Finbraten AK, Syversen U, Skranes J, Andersen GL, Stevenson RD, Vik T (2015) Bone mineral density and vitamin D status in ambulatory and non-ambulatory children with cerebral palsy. Osteoporosis Int 26(1):141–150

    Google Scholar 

  • Fowler EG, Rao S, Nattiv A, Heberer K, Oppenheim WL (2015) Bone density in premenopausal women and men under 50 years of age with cerebral palsy. Arch Phys Med Rehabil 96(7):1304–1309

    Google Scholar 

  • Frost HM (1997) On our age-related bone loss: insights from a new paradigm. J Bone Miner Res 12(10):1539–1546

    CAS  Google Scholar 

  • Fuchs RK, Bauer JJ, Snow CM (2001) Jumping improves hip and lumbar spine bone mass in prepubescent children: a randomized controlled trial. J Bone Miner Res 16(1):148–156

    CAS  Google Scholar 

  • Fung EB, Samson-Fang L, Stallings VA, Conaway M, Liptak G, Henderson RC, Worley G, O'donnell M, Calvert R, Rosenbaum P, Chumlea W, Stevenson RD (2002) Feeding dysfunction is associated with poor growth and health status in children with cerebral palsy. J Am Diet Assoc 102(3):361–373

    Google Scholar 

  • Genant HK, Engelke K, Fuerst T, Gluer CC, Grampp S, Harris ST, Jergas M, Lang T, Lu Y, Majumdar S, Mathur A, Takada M (1996) Noninvasive assessment of bone mineral and structure: state of the art. J Bone Miner Res 11(6):707–730

    CAS  Google Scholar 

  • Gilsanz V, Wren TA, Sanchez M, Dorey F, Judex S, Rubin C (2006) Low-level, high-frequency mechanical signals enhance musculoskeletal development of young women with low BMD. J Bone Miner Res 21(9):1464–1474

    Google Scholar 

  • Grossberg R, Blackford MG, Kecskemethy HH, Henderson R, Reed MD (2015) Longitudinal assessment of bone growth and development in a facility-based population of young adults with cerebral palsy. Dev Med Child Neurol 57(11):1064–1069

    Google Scholar 

  • Heaney RP (2004) Measuring bone mass accumulation. Am J Clin Nutr 79(2):341–341

    CAS  Google Scholar 

  • Heaney RP, Abrams S, Dawson-Hughes B, Looker A, Marcus R, Matkovic V, Weaver C (2000) Peak bone mass. Osteoporosis Int 11(12):985–1009

    CAS  Google Scholar 

  • Henderson RC (1997) Bone density and other possible predictors of fracture risk in children and adolescents with spastic quadriplegia. Dev Med Child Neurol 39(4):224–227

    CAS  Google Scholar 

  • Henderson RC (2013) A population study of fractures: what we can learn and what we cannot learn. Dev Med Child Neurol 55(9):779–780

    Google Scholar 

  • Henderson RC, Lin PP, Greene WB (1995) Bone-mineral density in children and adolescents who have spastic cerebral palsy. J Bone Joint Surg Am 77(11):1671–1681

    CAS  Google Scholar 

  • Henderson RC, Lark RK, Gurka MJ, Worley G, Fung EB, Conaway M, Stallings VA, Stevenson RD (2002a) Bone density and metabolism in children and adolescents with moderate to severe cerebral palsy. Pediatrics 110(1):e5

    Google Scholar 

  • Henderson RC, Lark RK, Kecskemethy HH, Miller F, Harcke HT, Bachrach SJ (2002b) Bisphosphonates to treat osteopenia in children with quadriplegic cerebral palsy: a randomized, placebo-controlled clinical trial. J Pediatr 141(5):644–651

    CAS  Google Scholar 

  • Henderson RC, Kairalla JA, Barrington JW, Abbas A, Stevenson RD (2005) Longitudinal changes in bone density in children and adolescents with moderate to severe cerebral palsy. J Pediatr 146(6):769–775

    Google Scholar 

  • Henderson RC, Berglund LM, May R, Zemel BS, Grossberg RI, Johnson J, Plotkin H, Stevenson RD, Szalay E, Wong B, Kecskemethy HH, Harcke HT (2010) The relationship between fractures and DXA measures of BMD in the distal femur of children and adolescents with cerebral palsy or muscular dystrophy. J Bone Miner Res 25(3):520–526

    Google Scholar 

  • Hsue BJ, Miller F, Su FC (2009) The dynamic balance of the children with cerebral palsy and typical developing during gait. Part I: spatial relationship between COM and COP trajectories. Gait Posture 29(3):465–470

    Google Scholar 

  • Jamal SA, Gilbert J, Gordon C, Bauer DC (2006) Cortical PQCT measures are associated with fractures in dialysis patients. J Bone Miner Res 21(4):543–548

    Google Scholar 

  • Jekovec-Vrhovsek M, Kocijancic A, Prezelj J (2000) Effect of vitamin D and calcium on bone mineral density in children with CP and epilepsy in full-time care. Dev Med Child Neurol 42(6):403–405

    CAS  Google Scholar 

  • Johnson DL, Miller F, Subramanian P, Modlesky CM (2009) Adipose tissue infiltration of skeletal muscle in children with cerebral palsy. J Pediatr 154(5):715–720

    Google Scholar 

  • Kim W, Lee SJ, Yoon YK, Shin YK, Cho SR, Rhee Y (2015) Adults with spastic cerebral palsy have lower bone mass than those with dyskinetic cerebral palsy. Bone 71:89–93

    Google Scholar 

  • Kim HJ, Choi HN, Yim JE (2018) Food habits, dietary intake, and body composition in children with cerebral palsy. Clin Nutr Res 7(4):266–275

    Google Scholar 

  • King W, Levin R, Schmidt R, Oestreich A, Heubi JE (2003) Prevalence of reduced bone mass in children and adults with spastic quadriplegia. Dev Med Child Neurol 45(1):12–16

    Google Scholar 

  • Kirmani S, Christen D, Van Lenthe GH, Fischer PR, Bouxsein ML, Mccready LK, Melton LJ 3rd, Riggs BL, Amin S, Muller R, Khosla S (2009) Bone structure at the distal radius during adolescent growth. J Bone Miner Res 24(6):1033–1042

    Google Scholar 

  • Kleerekoper M, Villanueva AR, Stanciu J, Rao DS, Parfitt AM (1985) The role of three-dimensional trabecular microstructure in the pathogenesis of vertebral compression fractures. Calcified Tissue Int 37(6):594–597

    CAS  Google Scholar 

  • Klein GL, Fitzpatrick LA, Langman CB, Beck TJ, Carpenter TO, Gilsanz V, Holm IA, Leonard MB, Specker BL (2005) The state of pediatric bone: summary of the ASBMR pediatric bone initiative. J Bone Miner Res 20(12):2075–2081

    Google Scholar 

  • Krick J, Murphymiller P, Zeger S, Wright E (1996) Pattern of growth in children with cerebral palsy. J Am Diet Assoc 96(7):680–685

    CAS  Google Scholar 

  • Laib A, Beuf O, Issever A, Newitt DC, Majumdar S (2001) Direct measures of trabecular bone architecture from MR images. Adv Exp Med Biol 496:37–46

    CAS  Google Scholar 

  • Laing EM, Wilson AR, Modlesky CM, O'connor PJ, Hall DB, Lewis RD (2005) Initial years of recreational artistic gymnastics training improves lumbar spine bone mineral accrual in 4- to 8-year-old females. J Bone Miner Res 20(3):509–519

    Google Scholar 

  • Langdahl B, Ferrari S, Dempster DW (2016) Bone modeling and remodeling: potential as therapeutic targets for the treatment of osteoporosis. Ther Adv Musculoskel 8(6):225–235

    CAS  Google Scholar 

  • Lebrasseur NK, Achenbach SJ, Melton LJ 3rd, Amin S, Khosla S (2012) Skeletal muscle mass is associated with bone geometry and microstructure and serum insulin-like growth factor binding protein-2 levels in adult women and men. J Bone Miner Res 27(10):2159–2169

    CAS  Google Scholar 

  • Lee JJ, Lyne ED (1990) Pathologic fractures in severely handicapped children and young adults. J Pediatr Orthoped B 10(4):497–500

    CAS  Google Scholar 

  • Leung KS, Shi HF, Cheung WH, Qin L, Ng WK, Tam KF, Tang N (2009) Low-magnitude high-frequency vibration accelerates callus formation, mineralization, and fracture healing in rats. J Orthop Res 27(4):458–465

    Google Scholar 

  • Leung KS, Li CY, Tse YK, Choy TK, Leung PC, Hung VW, Chan SY, Leung AH, Cheung WH (2014) Effects of 18-month low-magnitude high-frequency vibration on fall rate and fracture risks in 710 community elderly--a cluster-randomized controlled trial. Osteoporos Int 25(6):1785–1795

    CAS  Google Scholar 

  • Lewiecki EM, Watts NB, Mcclung MR, Petak SM, Bachrach LK, Shepherd JA, Downs RW Jr (2004) Official positions of the international society for clinical densitometry. J Clin Endocrinol Metab 89(8):3651–3655

    CAS  Google Scholar 

  • Link TM, Majumdar S, Augat P, Lin JC, Newitt D, Lu Y, Lane NE, Genant HK (1998) In vivo high resolution MRI of the calcaneus: differences in trabecular structure in osteoporosis patients. J Bone Miner Res 13(7):1175–1182

    CAS  Google Scholar 

  • Lu TW, Taylor SJG, O'connor JJ, Walker PS (1997) Influence of muscle activity on the forces in the femur: an in vivo study. J Biomech 30(11–12):1101–1106

    CAS  Google Scholar 

  • Luu YK, Capilla E, Rosen CJ, Gilsanz V, Pessin JE, Judex S, Rubin CT (2009) Mechanical stimulation of mesenchymal stem cell proliferation and differentiation promotes osteogenesis while preventing dietary-induced obesity. J Bone Miner Res 24(1):50–61

    CAS  Google Scholar 

  • Majumdar S, Kothari M, Augat P, Newitt DC, Link TM, Lin JC, Lang T, Lu Y, Genant HK (1998) High-resolution magnetic resonance imaging: three-dimensional trabecular bone architecture and biomechanical properties. Bone 22(5):445–454

    CAS  Google Scholar 

  • Majumdar S, Link TM, Augat P, Lin JC, Newitt D, Lane NE, Genant HK (1999) Trabecular bone architecture in the distal radius using magnetic resonance imaging in subjects with fractures of the proximal femur. Osteoporosis Int 10(3):231–239

    CAS  Google Scholar 

  • Marks SC, Odgren PR (2002) Structure and development of the skeleton. In: Principles of bone biology, 2nd edn. Academic Press, San Diego

    Google Scholar 

  • Martin RB, Burr DB, Sharkey NA, Fyhrie DP (2015) Skeletal tissue mechanics. Springer, New York

    Google Scholar 

  • McIvor WC, Samilson RL (1966) Fractures in patients with cerebral palsy. J Bone Joint Surg Am 48(5):858–866

    Google Scholar 

  • Modlesky CM, Lewis RD (2002) Does exercise during growth have a long-term effect on bone health? Exerc Sport Sci Rev 30(4):171–176

    Google Scholar 

  • Modlesky CM, Subramanian P, Miller F (2008) Underdeveloped trabecular bone microarchitecture is detected in children with cerebral palsy using high-resolution magnetic resonance imaging. Osteoporosis Int 19(2):169–176

    CAS  Google Scholar 

  • Modlesky CM, Kanoff SA, Johnson DL, Subramanian P, Miller F (2009) Evaluation of the femoral midshaft in children with cerebral palsy using magnetic resonance imaging. Osteoporosis Int 20(4):609–615

    CAS  Google Scholar 

  • Modlesky CM, Cavaiola ML, Smith JJ, Rowe DA, Johnson DL, Miller F (2010) A DXA-based mathematical model predicts midthigh muscle mass from magnetic resonance imaging in typically developing children but not in those with quadriplegic cerebral palsy. J Nutr 140(12):2260–2265

    CAS  Google Scholar 

  • Modlesky CM, Whitney DG, Singh H, Barbe MF, Kirby JT, Miller F (2015) Underdevelopment of trabecular bone microarchitecture in the distal femur of nonambulatory children with cerebral palsy becomes more pronounced with distance from the growth plate. Osteoporosis Int 26(2):505–512

    CAS  Google Scholar 

  • Moreland JD, Richardson JA, Goldsmith CH, Clase CM (2004) Muscle weakness and falls in older adults: a systematic review and meta-analysis. J Am Geriatr Soc 52(7):1121–1129

    Google Scholar 

  • Nakano H, Aoyagi K, Ohgi S, Akiyama T (2003) Factors influencing metacarpal bone mineral density in adults with cerebral palsy. J Bone Miner Metab 21(6):409–414

    Google Scholar 

  • Noble JJ, Fry N, Lewis AP, Charles-Edwards GD, Keevil SF, Gough M, Shortland AP (2014) Bone strength is related to muscle volume in ambulant individuals with bilateral spastic cerebral palsy. Bone 66:251–255

    Google Scholar 

  • Ott SM (1993) When bone mass fails to predict bone failure. Calcified Tissue Int 53(Suppl 1):S7–S13

    Google Scholar 

  • Ozel S, Switzer L, Macintosh A, Fehlings D (2016) Informing evidence-based clinical practice guidelines for children with cerebral palsy at risk of osteoporosis: an update. Dev Med Child Neurol 58(9):918–923

    Google Scholar 

  • Pack AM (2011) Genetic variation may clarify the relationship between epilepsy, antiepileptic drugs, and bone health. Eur J Neurol 18(1):3–4

    CAS  Google Scholar 

  • Paksu MS, Vurucu S, Karaoglu A, Karacalioglu AO, Polat A, Yesilyurt O, Unay B, Akin R (2012) Osteopenia in children with cerebral palsy can be treated with oral alendronate. Childs Nerv Syst 28(2):283–286

    Google Scholar 

  • Parfitt AM (1987) Trabecular bone architecture in the pathogenesis and prevention of fracture. Am J Med 82(1B):68–72

    CAS  Google Scholar 

  • Parfitt AM (1994) The two faces of growth: benefits and risks to bone integrity. Osteoporos Int 4(6):382–398

    CAS  Google Scholar 

  • Petit MA, Mckay HA, Mackelvie KJ, Heinonen A, Khan KM, Beck TJ (2002) A randomized school-based jumping intervention confers site and maturity-specific benefits on bone structural properties in girls: a hip structural analysis study. J Bone Miner Res 17(3):363–372

    CAS  Google Scholar 

  • Plotkin H (2006) Low doses of pamidronate to treat osteopenia in children with severe cerebral palsy: a pilot study. Dev Med Child Neurol 48(12):709–712

    Google Scholar 

  • Prentice A, Parsons TJ, Cole TJ (1994) Uncritical use of bone mineral density in absorptiometry may lead to size-related artifacts in the identification of bone mineral determinants. Am J Clin Nutr 60(6):837–842

    CAS  Google Scholar 

  • Presedo A, Dabney KW, Miller F (2007) Fractures in patients with cerebral palsy. J Pediatr Orthoped 27(2):147–153

    Google Scholar 

  • Reyes ML, Hernandez M, Holmgren LJ, Sanhueza E, Escobar RG (2011) High-frequency, low-intensity vibrations increase bone mass and muscle strength in upper limbs, improving autonomy in disabled children. J Bone Miner Res 26(8):1759–1766

    Google Scholar 

  • Rubin C, Xu G, Judex S (2001) The anabolic activity of bone tissue, suppressed by disuse, is normalized by brief exposure to extremely low-magnitude mechanical stimuli. FASEB J 15(12):2225–2229

    CAS  Google Scholar 

  • Rubin C, Recker R, Cullen D, Ryaby J, Mccabe J, Mcleod K (2004) Prevention of postmenopausal bone loss by a low-magnitude, high-frequency mechanical stimuli: a clinical trial assessing compliance, efficacy, and safety. J Bone Miner Res 19(3):343–351

    Google Scholar 

  • Schoenau E, Neu CM, Mokov E, Wassmer G, Manz F (2000) Influence of puberty on muscle area and cortical bone area of the forearm in boys and girls. J Clin Endocrinol Metab 85(3):1095–1098

    CAS  Google Scholar 

  • Sell CA, Masi JN, Burghardt A, Newitt D, Link TM, Majumdar S (2005) Quantification of trabecular bone structure using magnetic resonance imaging at 3 tesla--calibration studies using microcomputed tomography as a standard of reference. Calcified Tissue Int 76(5):355–364

    CAS  Google Scholar 

  • Sheridan KJ (2009) Osteoporosis in adults with cerebral palsy. Dev Med Child Neurol 51(Suppl. 4):38–51

    Google Scholar 

  • Shortland AP, Harris CA, Gough M, Robinson RO (2002) Architecture of the medial gastrocnemius in children with spastic diplegia. Dev Med Child Neurol 44(3):158–163

    Google Scholar 

  • Siffert RS, Luo GM, Cowin SC, Kaufman JJ (1996) Dynamic relationships of trabecular bone density, architecture, and strength in a computational model of osteopenia. Bone 18(2):197–206

    CAS  Google Scholar 

  • Snow-Harter C, Bouxsein ML, Lewis BT, Carette S, Weinstein P, Marcus R (1990) Muscle strength as a predictor of bone mineral density in young women. J Bone Miner Res 5(6):589–595

    CAS  Google Scholar 

  • Sornay-Rendu E, Boutroy S, Munoz F, Delmas PD (2007) Alterations of cortical and trabecular architecture are associated with fractures in postmenopausal women, partially independent of decreased BMD measured by DXA: the OFELY study. J Bone Miner Res 22(3):425–433

    Google Scholar 

  • Vestergaard P (2015) Effects of antiepileptic drugs on bone health and growth potential in children with epilepsy. Pediatr Drugs 17(2):141–150

    Google Scholar 

  • Vohora D, Anwar MJ (2013) Phenytoin and sodium valproate (but not levetiracetam) induces bone loss in swiss albino female mice, prevention by raloxifene, role of estradiol/TGF beta3 pathway. Osteoporosis Int 24:S611–S611

    Google Scholar 

  • Wallace SJ (2001) Epilepsy in cerebral palsy. Dev Med Child Neurol 43(10):713–717

    CAS  Google Scholar 

  • Weinbaum S, Cowin SC, Zeng Y (1994) A model for the excitation of osteocytes by mechanical loading-induced bone fluid shear stresses. J Biomech 27(3):339–360

    CAS  Google Scholar 

  • Whitney DG, Singh H, Miller F, Barbe MF, Slade JM, Pohlig RT, Modlesky CM (2017) Cortical bone deficit and fat infiltration of bone marrow and skeletal muscle in ambulatory children with mild spastic cerebral palsy. Bone 94:90–97

    Google Scholar 

  • Woodhead HJ, Kemp AF, Blimkie CJR, Briody JN, Duncan CS, Thompson M, Lam A, Howman-Giles R, Cowell CT (2001) Measurement of midfemoral shaft geometry: repeatability and accuracy using magnetic resonance imaging and dual-energy X-ray absorptiometry. J Bone Miner Res 16(12):2251–2259

    CAS  Google Scholar 

  • Worlock P, Stower M (1986) Fracture patterns in Nottingham children. J Pediatr Orthop 6(6):656–660

    CAS  Google Scholar 

  • Wort UU, Nordmark E, Wagner P, Duppe H, Westbom L (2013) Fractures in children with cerebral palsy: a total population study. Dev Med Child Neurol 55(9):821–826

    Google Scholar 

  • Wren TAL, Lee DC, Hara R, Rethlefsen SA, Kay RM, Dorey FJ, Gilsanz V (2010) Effect of High-frequency, Low-magnitude Vibration on Bone and Muscle in Children With Cerebral Palsy. J Pediatr Orthoped 30(7):732–738

    Google Scholar 

  • Wren TAL, Kalkwarf HJ, Zemel BS, Lappe JM, Oberfield S, Shepherd JA, Winer KK, Gilsanz V (2014) Longitudinal tracking of dual-energy X-ray absorptiometry bone measures over 6 years in children and adolescents: persistence of low bone mass to maturity. J Pediatr 164(6):1280–1285

    Google Scholar 

  • Xie L, Jacobson JM, Choi ES, Busa B, Donahue LR, Miller LM, Rubin CT, Judex S (2006) Low-level mechanical vibrations can influence bone resorption and bone formation in the growing skeleton. Bone 39(5):1059–1066

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher M. Modlesky .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Modlesky, C.M., Zhang, C. (2020). Bone Size, Architecture, and Strength Deficits in Cerebral Palsy. In: Miller, F., Bachrach, S., Lennon, N., O'Neil, M.E. (eds) Cerebral Palsy. Springer, Cham. https://doi.org/10.1007/978-3-319-74558-9_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-74558-9_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-74557-2

  • Online ISBN: 978-3-319-74558-9

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics