Skip to main content

Active Interrogation Testing Standards

  • Chapter
  • First Online:
Active Interrogation in Nuclear Security
  • 678 Accesses

Abstract

Active interrogation systems for cargo inspection are designed to automatically determine the presence of special nuclear material (SNM) in transport by observing the radiation emitted by an object when exposed to an external radiation source. Active interrogation systems are contrasted with passive detection systems, such as radiation portal monitor systems, that detect the neutron and gamma radiation spontaneously emitted by SNM. Operational limitations to not interfere with commerce can restrict the use any interdiction system, including passive detection, active-interrogation and imaging systems. Because of their cost and complexity, active interrogation systems are intended for applications where SNM may be in shielded configurations that may not normally be detectable by passive systems. Active interrogation systems range from those that only indicate the presence of high-Z materials, to fissionable material detection, to those that detect specific SNM materials. The decision to deploy an AI system will depend on its ability to meet standards and specifications, its effectiveness, and its ability to fit into the operational environment. To ensure AI systems are designed and tested to a consistent level, minimum performance standards have been developed for evaluating these systems. Development of an active interrogation system that has the sensitivity to SNM that is needed while also being deployable is a challenge. It is the aim of standards to define a set of tests that can be performed on a system in an economic manner while challenging the capability of the system.

Richard Kouzes; with contributions from Edward Siciliano, Glen Warren (Pacific Northwest National Laboratory) and Peter Chiaro (Oak Ridge National Laboratory)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    While AI systems are also used for other contraband detection, the focus here is only on standards for SNM detection.

References

  1. R.C. Runkle, D.L. Chichester, S.J. Thompson, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 663(1), 75 (2012). http://dx.doi.org/10.1016/j.nima.2011.09.052. http://www.sciencedirect.com/science/article/pii/S016890021101847X

  2. A.N.S.I. (ANSI), American national standard for determination of the imaging performance of x-ray and gamma-ray systems for cargo and vehicle security screening. Technical Report N42.46-2008 (2008)

    Google Scholar 

  3. U.D. of Energy, Restricted data declassification decisions 1946 to the present. Technical Report, U.S. Department of Energy (2001)

    Google Scholar 

  4. I.A.E. Agency, The physical protection of nuclear material and nuclear facilities. Technical Report INFCIRC/225/Rev.5 (Corrected) (1998)

    Google Scholar 

  5. A.N.S.I. (ANSI), Minimum performance criteria for active interrogation systems used for homeland security. Technical Report N42.41 (2007)

    Google Scholar 

  6. I.E.C. (IEC), Radiation protection instrumentation – cargo/vehicle radiographic inspection system. Technical Report 62523 (2010)

    Google Scholar 

  7. U.D. of Homeland Security Domestic Nuclear Detection Office, Technical capability standard for special nuclear materials detection and localization by active interrogation. Technical Report (2017)

    Google Scholar 

  8. S. Agostinelli, J. Allison, K. Amako, J. Apostolakis, H. Araujo, P. Arce, M. Asai, D. Axen, S. Banerjee, G. Barrand, F. Behner, L. Bellagamba, J. Boudreau, L. Broglia, A. Brunengo, H. Burkhardt, S. Chauvie, J. Chuma, R. Chytracek, G. Cooperman, G. Cosmo, P. Degtyarenko, A. Dell’Acqua, G. Depaola, D. Dietrich, R. Enami, A. Feliciello, C. Ferguson, H. Fesefeldt, G. Folger, F. Foppiano, A. Forti, S. Garelli, S. Giani, R. Giannitrapani, D. Gibin, J.G. Cadenas, I. González, G.G. Abril, G. Greeniaus, W. Greiner, V. Grichine, A. Grossheim, S. Guatelli, P. Gumplinger, R. Hamatsu, K. Hashimoto, H. Hasui, A. Heikkinen, A. Howard, V. Ivanchenko, A. Johnson, F. Jones, J. Kallenbach, N. Kanaya, M. Kawabata, Y. Kawabata, M. Kawaguti, S. Kelner, P. Kent, A. Kimura, T. Kodama, R. Kokoulin, M. Kossov, H. Kurashige, E. Lamanna, T. Lampén, V. Lara, V. Lefebure, F. Lei, M. Liendl, W. Lockman, F. Longo, S. Magni, M. Maire, E. Medernach, K. Minamimoto, P.M. de Freitas, Y. Morita, K. Murakami, M. Nagamatu, R. Nartallo, P. Nieminen, T. Nishimura, K. Ohtsubo, M. Okamura, S. O’Neale, Y. Oohata, K. Paech, J. Perl, A. Pfeiffer, M. Pia, F. Ranjard, A. Rybin, S. Sadilov, E.D. Salvo, G. Santin, T. Sasaki, N. Savvas, Y. Sawada, S. Scherer, S. Sei, V. Sirotenko, D. Smith, N. Starkov, H. Stoecker, J. Sulkimo, M. Takahata, S. Tanaka, E. Tcherniaev, E.S. Tehrani, M. Tropeano, P. Truscott, H. Uno, L. Urban, P. Urban, M. Verderi, A. Walkden, W. Wander, H. Weber, J. Wellisch, T. Wenaus, D. Williams, D. Wright, T. Yamada, H. Yoshida, D. Zschiesche, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 506(3), 250 (2003). http://dx.doi.org/10.1016/S0168-9002(03)01368-8. http://www.sciencedirect.com/science/article/pii/S0168900203013688

  9. J.T. Goorley, M.R. James, T.E. Booth, F.B. Brown, J.S. Bull, L.J. Cox, J.W.J. Durkee, J.S. Elson, M.L. Fensin, R.A.I. Forster, J.S. Hendricks, H.G.I. Hughes, R.C. Johns, B.C. Kiedrowski, R.L. Martz, S.G. Mashnik, G.W. McKinney, D.B. Pelowitz, R.E. Prael, J.E. Sweezy, L.S. Waters, T. Wilcox, A.J. Zukaitis, Initial mcnp6 release overview. Technical Report LA-UR-11-07082, Los Alamos National Laboratory, Los Alamos, New Mexico (2011)

    Google Scholar 

  10. D. Pelowitz, Mcnpx user’s manual version 2.7.0. Technical Report LA-CP-11-00438, Los Alamos National Laboratory, Los Alamos, New Mexico (2011)

    Google Scholar 

  11. K.A. Jordan, T. Gozani, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 579(1), 388 (2007). http://dx.doi.org/10.1016/j.nima.2007.04.083. http://www.sciencedirect.com/science/article/pii/S0168900207006584. Proceedings of the 11th Symposium on Radiation Measurements and Applications

  12. K.A. Jordan, T. Gozani, in Joint International Topical Meeting on Mathematics and Computation and Supercomputing in Nuclear Applications (American Nuclear Society, Monterey, 2007)

    Google Scholar 

  13. J. Verbeke, C. Hagmann, D. Wright, Simulation of neutron and gamma ray emission from fission and photofission. Technical Report UCRL-AR-228518, Lawrence Livermore National Laboratory, Livermore (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard Kouzes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kouzes, R. (2018). Active Interrogation Testing Standards. In: Jovanovic, I., Erickson, A. (eds) Active Interrogation in Nuclear Security. Advanced Sciences and Technologies for Security Applications. Springer, Cham. https://doi.org/10.1007/978-3-319-74467-4_11

Download citation

Publish with us

Policies and ethics