Skip to main content

Basic Electrical Impedance Tomography

  • Chapter
  • First Online:
Bioimpedance in Biomedical Applications and Research

Abstract

Electrical impedance tomography (EIT) is a non-radiative, inexpensive technique that can facilitate real-time dynamic monitoring. It has the potential to be of considerable clinical value playing an important role in diagnostics and monitoring of a number of disease conditions. EIT has been under development for over 100 years for industrial applications. Approximately 40 years ago it started to be applied to clinical problems. Some researchers tried to develop EIT as a replacement for image modality liker MRI or CT; however the really potential of EIT is its ability to monitor physiological condition related to impedance change. This is due to EITs high temporal resolution. This chapter introduces some of the basic concepts of EIT along with a number of example clinician applications, specifically, hardware, reconstruction algorithms and examples of its potential use in the brain, breast and lung.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adler, A., Arnold, J. H., Bayford, R., Borsic, A., Brown, B., Dixon, P., et al. (2009). GREIT: A unified approach to 2D linear EIT reconstruction of lung images. Physiological Measurement, 30(6), S35–S55. https://doi.org/10.1088/0967-3334/30/6/S03. Epub 2009 Jun 2.

    Article  Google Scholar 

  • Adler, A., & Lionheart, W. R. B. (2006). Uses and abuses of EIDORS: An extensible software base for EIT. Physiological Measurement, 27(5), S25.

    Article  Google Scholar 

  • Barber, D. C. (1989). A review of image reconstruction techniques for electrical impedance tomography. Medical Physics, 16, 162–169.

    Article  Google Scholar 

  • Barber, D. C., & Brown, B. H. (1984). Applied potential tomography. Journal of Physics E: Scientific Instruments, 17, 723–733.

    Article  Google Scholar 

  • Bayford, R., & Tizzard, A. (2012). Bioimpedance imaging: An overview of potential clinical applications. Analyst, 137(20), 4635–4643. https://doi.org/10.1039/C2AN35874C

    Article  Google Scholar 

  • Bayford, R. H. (2006). Bioimpedance tomography (electrical impedance tomography). Annual Review of Biomedical Engineering, 8, 63–91.

    Article  Google Scholar 

  • Borsic, A., & Bayford, R. (2010). Forward solving in electrical impedance tomography with algebraic multigrid wavelet based preconditioners. Journal of Physics: Conference Series, 224(1), 012053.

    Google Scholar 

  • Borsic, A., Halter, R., Wan, Y., Hartov, A., & Paulsen, K. D. (2010). Electrical impedance tomography reconstruction for three-dimensional imaging of the prostate. Physiological Measurement, 31(8), S1–16. https://doi.org/10.1088/0967-3334/31/8/S01

    Article  Google Scholar 

  • Cole, K. S. (1942). Dispersion and absorption in dielectrics II. Direct current characteristics. The Journal of Chemical Physics, 10, 98. https://doi.org/10.1063/1.1723677

    Article  Google Scholar 

  • Cole, K. S., & Cole, R. H. (1941). Dispersion and absorption in dielectrics I. Alternating current characteristics. The Journal of Chemical Physics, 9, 341. https://doi.org/10.1063/1.1750906

    Article  Google Scholar 

  • Dehghani, H., Soni, N., Halter, R., Hartov, A., & Paulsen, K. D. (2005). Excitation patterns in three-dimensional electrical impedance tomography. Physiological Measurement, 26, S185–S197. https://doi.org/10.1088/0967-3334/26/2/018

    Article  Google Scholar 

  • Draeger. https://www.draeger.com/en_uk/Hospital/Productselector/Ventilation-and-Respiratory-Monitoring/ICU-Ventilation-and-Respiratory-Monitoring.

  • Gisser, D. G., Isaacson, D., & Newell, J. C. (1988). Current topics in impedance imaging. Clinical Physics and Physiological Measurement, 9, 35.

    Article  Google Scholar 

  • Hamilton, S. J. (2017). EIT Imaging of admittivities with a D-bar method and spatial prior: Experimental results for absolute and difference imaging. Published 22 May 2017. Institute of Physics and Engineering in Medicine. Physiological Measurement, Volume 38, Number 6. In: 16th International Conference on Electrical Bioimpedance and 17th International Conference on Biomedical Applications of Electrical Impedance Tomography (pp. 19–23). Stockholm.

    Google Scholar 

  • Horesh, L. (2006). Some novel approaches in modelling and image reconstruction for multi-frequency electrical impedance tomography of the human brain. PhD thesis. London: University College London.

    Google Scholar 

  • Jehl, M., Dedner, A., Betcke, T., Aristovich, K., Klofkorn, R., & Holder, D. (2015). A fast-parallel solver for the forward problem in electrical impedance tomography. IEEE Transactions on Biomedical Engineering, 62(1), 126–137.

    Article  Google Scholar 

  • Kim, H. J., Kim, Y. T., Minhas, A. S., Jeong, W. C., Woo, E. J., Seo, J. K., et al. (2009). In vivo high-resolution conductivity imaging of the human leg using MREIT: The first human experiment. IEEE Transactions on Medical Imaging, 28, 1681–1687. https://doi.org/10.1109/TMI.2009.2018112

    Article  Google Scholar 

  • Kolehmainen, V., Arridge, S. R., Lionheart, W. R. B., Vauhkonen, M., & Kaipio, J. P. (1999). Recovery of region boundaries of piecewise constant coefficients of an elliptic PDE from boundary data. Inverse Problems, 15(5), 1375.

    Article  MathSciNet  MATH  Google Scholar 

  • Lionheart, W., Polydorides, N., & Borsic, A. (2004). Part 1 of electrical impedance tomography: Methods, history and applications. In D. Holder (Ed.), (pp. 3–64). Bristol: Institute of Physics Publishing. ISBN: 0750309520.

    Google Scholar 

  • Lionheart, W. R. B. (2004). EIT reconstruction algorithms: Pitfalls, challenges and recent developments. Physiological Measurement, 25(1), 125.

    Article  Google Scholar 

  • Mahara, A., Khan, S., Murphy, E., Schned, A., Hyams, E., & Halter, R. J. (2015). 3D microendoscopic electrical impedance tomography for margin assessment during robot-assisted laparoscopic prostatectomy. IEEE Transactions on Medical Imaging, 34(7), 1590–1601. https://doi.org/10.1109/TMI.2015.2407833

    Article  Google Scholar 

  • Mayer, M., Brunner, P., Merwa, R., & Scharfetter, H. (2005). Monitoring of lung edema using focused impedance spectroscopy: A feasibility study. Physiological Measurement, 26, 185–192. https://doi.org/10.1088/0967-3334/26/3/004

    Article  Google Scholar 

  • Menin, O. H., Rolnik, V., & Martinez, A. S. (2013). Boundary element method and simulated annealing algorithm applied to electrical impedance tomography image reconstruction. Revista Brasileira de Ensino de Física, 35(2), 1–7.

    Article  Google Scholar 

  • Murphy, E. K., Mahara, A., Wu, X., & Halter, R. J. (2017). Phantom experiments using soft-prior regularization EIT for breast cancer imaging. Published 22 May 2017, Institute of Physics and Engineering in Medicine. Physiological Measurement, Volume 38, Number 6. In: 16th International Conference on Electrical Bioimpedance and 17th International Conference on Biomedical Applications of Electrical Impedance Tomography (pp. 19–23). Stockholm.

    Google Scholar 

  • Paulsen, K. D., Moskowitz, M. J., Ryan, T. P., Mitchell, S. E., & Hoopes, P. J. (1996). Initial in vivo experience with EIT as a thermal estimator during hyperthermia. International Journal of Hyperthermia, 12, 573–591. https://doi.org/10.3109/02656739609027666

    Article  Google Scholar 

  • Pidcock, M. K., Kuzuoglu, M., & Leblebicioglu, K. (1995a). Analytic and semi-analytic solutions in electrical impedance tomography: I. Two-dimensional problems. Physiological Measurements, 16, 77–90.

    Article  Google Scholar 

  • Pidcock, M. K., Kuzuoglu, M., & Leblebicioglu, K. (1995b). Analytic and semi-analytic solutions in electrical impedance tomography: II. Three-dimensional problems. Physiological Measurements, 16, 91–110.

    Article  Google Scholar 

  • Scharfetter, H., Merwa, R., & Pilz, K. (2005). A new type of gradiometer for the receiving circuit of magnetic induction tomography (MIT). Physiological Measurement, 26, S307–S318.

    Article  Google Scholar 

  • Soni, N. K., Paulsen, K. D., Dehghani, H., & Hartov, A. (2006). Finite element implementation of Maxwell’s equations for image reconstruction in electrical impedance tomography. IEEE Transactions on Medical Imaging, 25(1), 55–61.

    Article  Google Scholar 

  • Swisstom AG. http://www.swisstom.com/.

  • Talmor, D., Sarge, T., Malhotra, A., O'Donnell, C. R., Ritz, R., Lisbon, A. et al. (2008) Mechanical ventilation guided by esophageal pressure in acute lung injury. The New England Journal of Medicine 359:2095–2104. https://doi.org/10.1056/NEJMoa0708638.

    Article  Google Scholar 

  • Tidswell, A. T., Gibson, A., Bayford, R. H., & Holder, D. S. (2001). Three-dimensional electrical impedance tomography of human brain activity. NeuroImage, 13, 283–294.

    Article  Google Scholar 

  • Wolf, G. K., & Arnold, J. H. (2006). Electrical impedance tomography: Ready for prime time? Intensive Care Medicine, 32, 1290–1292. https://doi.org/10.1007/s00134-006-0253-z

    Article  Google Scholar 

  • Wu, Y., Langlois, P. J., Bayford, R., & Demosthenous, A. (2016). Design of a CMOS active electrode IC for wearable electrical impedance tomography systems. ISBN Information: Electronic ISSN: 2379-447X. INSPEC Accession Number: 16226602. doi: https://doi.org/10.1109/ISCAS.2016.7527373.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard Bayford .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bayford, R. (2018). Basic Electrical Impedance Tomography. In: Simini, F., Bertemes-Filho, P. (eds) Bioimpedance in Biomedical Applications and Research. Springer, Cham. https://doi.org/10.1007/978-3-319-74388-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-74388-2_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-74387-5

  • Online ISBN: 978-3-319-74388-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics