Skip to main content

Approximating Event System Abstractions by Covering Their States and Transitions

  • Conference paper
  • First Online:
Perspectives of System Informatics (PSI 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10742))

Abstract

In event systems, contrarily to sequential ones, the control flow is implicit. Consequently, their abstraction may give rise to disconnected and unreachable paths. This paper presents an algorithmic method for computing a reachable and connected under-approximation of the abstraction of a system specified as an event system. We compute the under-approximation with concrete instances of the abstract transitions, that cover all the states and transitions of the predicate-based abstraction. To be of interest, these concrete transitions have to be reachable and connected to each other. We propose an algorithmic method that instantiates each of the abstract transitions, with heuristics to favour their connectivity. The idea is to prolong whenever possible the already reached sequences of concrete transitions, and to parameterize the order in which the states and actions occur. The paper also reports on an implementation, which permits to provide experimental results confirming the interest of the approach with related heuristics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Our experimental models were written in B, but could alternatively be translated to a syntax with guarded commands [4], such as Abstract State Machines [8, 9].

References

  1. Graf, S., Saidi, H.: Construction of abstract state graphs with PVS. In: Grumberg, O. (ed.) CAV 1997. LNCS, vol. 1254, pp. 72–83. Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-63166-6_10

    Chapter  Google Scholar 

  2. Godefroid, P., Jagadeesan, R.: On the expressiveness of 3-valued models. In: Zuck, L.D., Attie, P.C., Cortesi, A., Mukhopadhyay, S. (eds.) VMCAI 2003. LNCS, vol. 2575, pp. 206–222. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36384-X_18

    Chapter  Google Scholar 

  3. Abrial, J.R.: Modeling in Event-B: System and Software Design. Cambridge University Press, Cambridge (2010)

    Book  MATH  Google Scholar 

  4. Dijkstra, E.: Guarded commands, nondeterminacy, and formal derivation of programs. Commun. ACM 18(8), 453–457 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  5. Dijkstra, E.: A Discipline of Programming. Prentice-Hall, Upper Saddle River (1976)

    MATH  Google Scholar 

  6. Veanes, M., Yavorsky, R.: Combined algorithm for approximating a finite state abstraction of a large system. In: ICSE 2003/Scenarios Workshop, pp. 86–91 (2003)

    Google Scholar 

  7. Abrial, J.R.: The B Book. Cambridge University Press, Cambridge (1996)

    Book  MATH  Google Scholar 

  8. Gurevich, Y., Kutter, P.W., Odersky, M., Thiele, L. (eds.): ASM 2000. LNCS, vol. 1912. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-44518-8

    Google Scholar 

  9. Gurevich, Y.: Sequential abstract-state machines capture sequential algorithms. ACM Trans. Comput. Log. 1(1), 77–111 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bert, D., Cave, F.: Construction of finite labelled transition systems from B abstract systems. In: Grieskamp, W., Santen, T., Stoddart, B. (eds.) IFM 2000. LNCS, vol. 1945, pp. 235–254. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-40911-4_14

    Chapter  Google Scholar 

  11. Bride, H., Julliand, J., Masson, P.A.: Tri-modal under-approximation for test generation. Sci. Comput. Program. 132(P2), 190–208 (2016)

    Article  Google Scholar 

  12. Cousot, P., Cousot, R.: Abstract interpretation frameworks. J. Log. Comput. 2(4), 511–547 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  13. Larsen, K.G., Thomsen, B.: A modal process logic. In: LICS, pp. 203–210 (1988)

    Google Scholar 

  14. Godefroid, P., Huth, M., Jagadeesan, R.: Abstraction-based model checking using modal transition systems. In: Larsen, K.G., Nielsen, M. (eds.) CONCUR 2001. LNCS, vol. 2154, pp. 426–440. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44685-0_29

    Google Scholar 

  15. Ball, T.: A Theory of predicate-complete test coverage and generation. In: de Boer, F.S., Bonsangue, M.M., Graf, S., de Roever, W.-P. (eds.) FMCO 2004. LNCS, vol. 3657, pp. 1–22. Springer, Heidelberg (2005). https://doi.org/10.1007/11561163_1

    Chapter  Google Scholar 

  16. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78800-3_24

    Chapter  Google Scholar 

  17. Namjoshi, K.S., Kurshan, R.P.: Syntactic program transformations for automatic abstraction. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 435–449. Springer, Heidelberg (2000). https://doi.org/10.1007/10722167_33

    Chapter  Google Scholar 

  18. Păsăreanu, C.S., Pelánek, R., Visser, W.: Predicate abstraction with under-approximation refinement. LMCS 3(1:5), 1–22 (2007)

    MathSciNet  MATH  Google Scholar 

  19. Gulavani, B.S., Henzinger, T.A., Kannan, Y., Nori, A.V., Rajamani, S.K.: Synergy: a new algorithm for property checking. In: SIGSOFT FSE, pp. 117–127 (2006)

    Google Scholar 

  20. Beckman, N.E., Nori, A.V., Rajamani, S.K., Simmons, R.J., Tetali, S., Thakur, A.V.: Proofs from tests. IEEE Trans. Software Eng. 36(4), 495–508 (2010)

    Article  Google Scholar 

  21. Grieskamp, W., Gurevich, Y., Schulte, W., Veanes, M.: Generating finite state machines from abstract state machines. In: ISSTA, pp. 112–122 (2002)

    Google Scholar 

  22. Rapin, N., Gaston, C., Lapitre, A., Gallois, J.P.: Behavioral unfolding of formal specifications based on communicating extended automata. In: ATVA (2003)

    Google Scholar 

  23. Godefroid, P., Klarlund, N., Sen, K.: DART: directed automated random testing. In: PLDI, pp. 213–223 (2005)

    Google Scholar 

  24. Sen, K., Marinov, D., Agha, G.: CUTE: a concolic unit testing engine for C. In: ESEC/SIGSOFT FSE, pp. 263–272 (2005)

    Google Scholar 

  25. Cadar, C., Ganesh, V., Pawlowski, P.M., Dill, D.L., Engler, D.R.: EXE: automatically generating inputs of death. In: ACM CCS, pp. 322–335 (2006)

    Google Scholar 

  26. Tillmann, N., de Halleux, J.: Pex–white box test generation for.NET. In: Beckert, B., Hähnle, R. (eds.) TAP 2008. LNCS, vol. 4966, pp. 134–153. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-79124-9_10

    Chapter  Google Scholar 

  27. Păsăreanu, C.S., Visser, W.: A survey of new trends in symbolic execution for software testing and analysis. STTT 11(4), 339–353 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre-Alain Masson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Julliand, J., Kouchnarenko, O., Masson, PA., Voiron, G. (2018). Approximating Event System Abstractions by Covering Their States and Transitions. In: Petrenko, A., Voronkov, A. (eds) Perspectives of System Informatics. PSI 2017. Lecture Notes in Computer Science(), vol 10742. Springer, Cham. https://doi.org/10.1007/978-3-319-74313-4_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-74313-4_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-74312-7

  • Online ISBN: 978-3-319-74313-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics