Skip to main content

Clemente Biota

  • Chapter
  • First Online:
Deep Time Analysis

Part of the book series: Springer Geology ((SPRINGERGEOL))

Abstract

A diverse fauna of Ediacarans from the Clemente Formation of northwestern Sonora, México, includes Pteridinium cf. P. simplex, a recumbent sand frond Beothukis cf. B. mistakensis, the kimberellomorph Kimberella cf. K. quadrata, the solzid kimberellomorph Zirabagtaria ovata n. gen. n. sp., the praecambridiid Palankiras palmeri n. gen. n. sp., Vendamonia truncata n. gen. n. sp., and the aculiferans Clementechiton sonorensis McMenamin and Fleury, 2016 and Korifogrammia clementensis n. gen. n. sp. The Clemente biota provides new data regarding the Ediacaran Cuticle Paradox, which holds that in spite of their apparent simplicity, the Ediacaran cuticle in fact hosted a highly complex morphogenetic field. In a corollary of Williston’s Law, this cuticle underwent successive simplification at the end of the Proterozoic.

One of my correspondents expressed concern that I was perpetuating a dubious interpretation of Kimberella as a mollusk; for another, Kimberella-as-mollusk is crucial to the interpretation of early bilaterian evolution…Perhaps by the time you read this, things will be clearer.

Peter Godfrey-Smith Other Minds (2016)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Alpert SP (1976) Trilobite and star-like trace fossils from the White-Inyo Mountains, California. J Paleo 50(2):226–239

    Google Scholar 

  • Billings E (1872) On some fossils from the primordial rocks of Newfoundland. Can Nat Geol 6:465–479

    Google Scholar 

  • Brasier MD, Antcliffe JB (2009) Evolutionary relationships within the Avalonian Ediacara biota: new insights from laser analysis. J Geol Soc Lond 166(2):363–384

    Article  Google Scholar 

  • Briggs DEG, Clarkson ENK (1987) The first tomopterid, a polychaete from the Carboniferous of Scotland. Lethaia 20(3):257–262

    Article  Google Scholar 

  • Bykova N et al (2017) A geochemical study of the Ediacaran discoidal fossil Aspidella preserved in limestones: implications for its taphonomy and paleoecology. Geobiology 15:572–587

    Article  Google Scholar 

  • Crimes TP (1987) Trace fossils and correlation of late Precambrian and early [sic] Cambrian strata. Geol Mag 124:97–119

    Article  Google Scholar 

  • Cui H, Kaufman AJ, Xiao S, Zhou C, Liu X-M (2017) Was the Ediacaran Shuram Excursion a globally synchronized early diagenetic event? Insights from methane-derived authigenic carbonates in the uppermost Doushantuo Formation, South China. Chem Geol 450:59–80

    Article  Google Scholar 

  • Darroch SAF et al (2017) Inference of facultative mobility in the enigmatic Ediacaran organism Parvancorina. Biol Lett 13:20170033

    Article  Google Scholar 

  • Dzik J, Martyshyn A (2015) Taphonomy of the Ediacaran Podolimirus and associated dipleurozoans from the Vendian of Ukraine. Precambrian Res 269:139–146

    Article  Google Scholar 

  • Elliot DA et al (2011) New evidence on the taphonomic context of the Ediacaran Pteridinium. Acta Palaeontol Pol 56(3):641–650

    Article  Google Scholar 

  • Evans SD et al (2017) Highly regulated growth and development of the Ediacaran macrofossil Dickinsonia costata. PLoS One 12(5):e0176874

    Article  Google Scholar 

  • Fedonkin MA (2003) The origin of Metazoa in the light of the Proterozoic fossil record. Paleontol Res 7(1):9–41

    Article  Google Scholar 

  • Fedonkin MA et al (2007) The rise of animals: evolution and diversification of the Kingdom Animalia. Johns Hopkins University Press, Baltimore

    Google Scholar 

  • Gehling JG (2004) Microbial mats in terminal Proterozoic siliciclastics: Ediacaran death masks. PALAIOS 14(1):40–57

    Article  Google Scholar 

  • Gehling JG et al (2000) The first named Ediacaran body fossil, Aspidella terranovica. Palaeontology 43:427–456

    Article  Google Scholar 

  • Gibson BM et al (2017) Ediacaran-style decay experiments with anemones and sea hares. Geol Soc Am Abstr Progr 49(6). https://doi.org/10.1130/abs/2017AM-304261

  • Glaessner MF (1958) New fossils from the base of the Cambrian in South Australia. Trans R Soc S Aust 81:185–188

    Google Scholar 

  • Glaessner MF (1959) The oldest fossil faunas in South Australia. Geol Rundsch 47(2):522–531

    Article  Google Scholar 

  • Glaessner MF (1979) Precambrian. In: Berggren WA et al (eds) Treatise on invertebrate paleontology, part A. Geological Society of America and the University of Kansas, Boulder/Lawrence, pp 79–118

    Google Scholar 

  • Glaessner MF, Wade M (1966) The late Precambrian fossils from Ediacara, South Australia. Palaeontology 9(4):599–628

    Google Scholar 

  • Glaessner MF, Wade M (1971) Praecambridium-a primitive arthropod. Lethaia 4:71–77

    Article  Google Scholar 

  • Godfrey-Smith P (2016) Other minds. Farrar, Straus and Giroux, New York

    Google Scholar 

  • Grazhdankin DV (2004) Patterns of distribution in the Ediacaran biotas: facies versus biogeography and evolution. Paleobiology 30(2):203–221

    Article  Google Scholar 

  • Grazhdankin D, Seilacher A (2005) A re-examination of the Nama-type Vendian organism Rangea schneiderhoehni. Geol Mag 142(5):571–582

    Article  Google Scholar 

  • Hall M et al (2013) Stratigraphy, palaeontology and geochemistry of the late Neoproterozoic Aar Member, southwest Namibia: reflecting environmental controls on Ediacara fossil preservation during the terminal Proterozoic in African Gondwana. Precambrian Res 238:214–232

    Article  Google Scholar 

  • Hoekzema RS et al (2017) Quantitative study of developmental biology confirms Dickinsonia as a metazoan. Proc R Soc B 284(1862). https://doi.org/10.1098/rspb.2017.1348

  • Hoyal Cuthill JF, Conway Morris S (2017) Nutrient-dependent growth underpinned the Ediacaran transition to large body size. Nat Ecol Evol 1:1201–1204

    Article  Google Scholar 

  • Ivantsov AY (2007) Small Vendian transversely articulated fossils. Paleontol J 41(2):113–122

    Article  Google Scholar 

  • Ivantsov AY (2009) A new reconstruction of Kimberella, a problematic Vendian metazoan. Paleontol J 43(6):601–611

    Article  Google Scholar 

  • Ivantsov AY (2017) The most probable Eumetazoa among late Precambrian macrofossils. Invertebr Zool 14(2):127–133

    Google Scholar 

  • Ivantsov AY, Leonov MV (2008) Otpechatki vendskix zhivotnykh-unikal’nye paleontologicheskie ob’eky Archangel’skoi oblasti. Arkhangel’sk, Russia

    Google Scholar 

  • Jensen S, Mens K (2001) Trace fossils Didymaulichnus cf. tirasensis and Monomorphichnus isp. from the Estonian Lower Cambrian, with a discussion on the Early Cambrian ichnocoenoses of Baltica. Proc Estonian Acad Sci Geol 50(2):75–85

    Google Scholar 

  • Laflamme M et al (2013) The end of the Ediacara biota: extinction, biotic replacement or Cheshire Cat? Gondwana Res 23:558–573

    Article  Google Scholar 

  • Lang FG et al (2005) Paleoproterozoic Mojave Province in northwestern Mexico? Isotopic and U-Pb zircon geochronologic studies of Precambrian and Cambrian crystalline and sedimentary rocks, Caborca, Sonora. Geol Soc Am Spec Pap 393:183–198

    Google Scholar 

  • Liu AG et al (2016) Martin Brasier’s contribution to the palaeobiology of the Ediacaran-Cambrian transition. In: Brasier AT et al (eds) Earth system evolution and early life: a celebration of the work of Martin Brasier. Geological Society, London, Special Publications 448: https://doi.org/10.1144/SP448.9

  • MacGabhann BA (2007) Discoidal fossils of the Ediacaran biota: a review of current understanding. In: Vickers-Rich P, Komarower P (eds) The rise and fall of the Ediacaran biota. Geological Society of London Special Publications 286, London, pp 297–313

    Google Scholar 

  • McCall GJH (2006) The Vendian (Ediacaran) in the geological record: enigmas in geology’s prelude to the Cambrian explosion. Earth-Sci Rev 77:1–229

    Article  Google Scholar 

  • McMenamin MAS (1984) Paleontology and stratigraphy of lower Cambrian and upper Proterozoic sediments, Caborca region, northwestern Sonora, Mexico. Ph.D. Dissertation, University of California at Santa Barbara. University Microfilms International, Ann Arbor

    Google Scholar 

  • McMenamin MAS (1993) Osmotrophy in fossil protoctists and early animals. Invertebr Reprod Dev 22(1–3):301–304

    Google Scholar 

  • McMenamin MAS (1996) Ediacaran biota from Sonora, Mexico. Proc Nat Acad Sci 93:4990–4993

    Article  Google Scholar 

  • McMenamin MAS (1998) The garden of Ediacara: discovering the first complex life. Columbia University Press, New York

    Google Scholar 

  • McMenamin MAS (ed) (2001) Paleontology Sonora: Lipalian and Cambrian. Meanma Press, South Hadley

    Google Scholar 

  • McMenamin MAS (2003a) Origin and early evolution of predators: the ecotone model and early evidence for macropredation. In: Kelley PH et al (eds) Predator-prey interactions in the fossil record. Kluwer, New York, pp 159–169

    Google Scholar 

  • McMenamin MAS (2003b) Spriggina is a trilobitoid ecdysozoan. Geol Soc Am Abstr Progr 35(6):105

    Google Scholar 

  • McMenamin MAS (2004) The ptychoparioid trilobite Skehanos gen. nov. from the Middle Cambrian of Avalonian Massachusetts and the Carolina Slate Belt, USA. Northeast Geol Environ Sci 24(4):276–281

    Google Scholar 

  • McMenamin MAS (2006) New data on the earliest animals and Ediacarans from Sonora, Mexico. Geol Soc Am Abstr Progr 38(7):303

    Google Scholar 

  • McMenamin MAS (2011) Fossil chitons and Monomorphichnus from the Ediacaran Clemente Formation, Sonora, Mexico. Geol Soc Am Abstr Progr 43(5):87

    Google Scholar 

  • McMenamin MAS (2016) Dynamic paleontology: using quantification and other tools to decipher the history of life. Springer, Cham

    Book  Google Scholar 

  • McMenamin MAS, Schulte McMenamin DL (1990) The emergence of animals: the Cambrian breakthrough. Columbia University Press, New York

    Google Scholar 

  • McMenamin MAS et al (1983) Precambrian-Cambrian transition problem in western North America: Part II. Early Cambrian skeletonized fauna and associated fossils from Sonora, Mexico. Geology 11:227–230

    Article  Google Scholar 

  • Meyer A (1926) Die Segmentalorgane von Tomopteris catharina (Gosse) nebst Bermerkungenueber das Nervensystem, die rosetten-förmigen Organe und die Cölombewimperung. Zeitschrift fĂĽr Wisenschaftliche Zoologie 127:297–402

    Google Scholar 

  • Meyer M et al (2014a) Taphonomy of the Ediacaran fossil Pteridinium simplex preserved three-dimensionally in mass flow deposits, Nama Group, Namibia. J Paleontol 88(2):240–252

    Article  Google Scholar 

  • Meyer M et al (2014b) Three-dimensional microCT analysis of the Ediacara fossil Pteridinium simplex sheds new light on its ecology and phylogenetic affinity. Precambrian Res 249:79–87

    Article  Google Scholar 

  • Narbonne GM (2005) The Ediacara biota: Neoproterozoic origin of animals and their ecosystems. Ann Rev Earth Planet Sci 33:421–442

    Article  Google Scholar 

  • Parry LA et al (2017) Ichnological evidence for meiofaunal bilaterians from the terminal Ediacaran and earliest Cambrian of Brazil. Nat Ecol Evol. https://doi.org/10.1038/s41559-017-0301-9

  • Paterson JR et al (2017) Rheotaxis in the Ediacaran epibenthic organism Parvancorina from South Australia. Sci Rep. https://doi.org/10.1038/srep45539

  • Pettijohn FJ et al (1972) Sand and sandstone. Springer, New York

    Google Scholar 

  • Pflug HD (1972) Zur Fauna der Nama-Schichten in SĂĽdwest-Afrika. III. Erniettomorpha, Bau und Systematik. Palaeontographica Abt A 139:134–170

    Google Scholar 

  • Phillips Dales R (1971) Bioluminescence in pelagic polychaetes. J Fish Res Board Can 28(10):1487–1489

    Article  Google Scholar 

  • Savazzi E (2015) The early Cambrian Eophyton toolmark and its producer. Paleontol Res 19(1):61–75

    Article  Google Scholar 

  • Schiffbauer JD et al (2016) The latest Ediacaran wormworld fauna: setting the ecological stage for the Cambrian explosion. GSA Today 26(11):4–11

    Article  Google Scholar 

  • Schwabe E (2010) Illustrated summary of chiton terminology (Mollusca, Polyplacophora). Spixiana 33(2):171–194

    Google Scholar 

  • Seilacher A (1989) Vendozoa: organismic constructions in the Proterozoic biosphere. Lethaia 22:229–239

    Article  Google Scholar 

  • Seilacher A (1994) Early multicellular life: late Proterozoic fossils and the Cambrian explosion. In: Bengtson S (ed) Early life on earth. Columbia University Press, New York, pp 389–400

    Google Scholar 

  • Seilacher A et al (2003) Ediacaran biota: the dawn of animal life in the shadow of giant protists. Paleontol Res 7(1):43–54

    Article  Google Scholar 

  • Sigwart JD (2017) Zoology: molluscs all beneath the sun, one shell, two shells, more or none. Curr Biol 27:R702–R719

    Article  Google Scholar 

  • Sokolov BS (1965) Paleontologiya dokembriya i organicheski mir k nachalu fanerozoya. Bsesoyuznyi simposiu po paleontologii dokembriya. Novosibirsk, pp 3–7

    Google Scholar 

  • Sour-Tovar F et al (2007) Ediacaran and Cambrian index fossils from Sonora, Mexico. Palaeontology 50(1):169–175

    Article  Google Scholar 

  • Stewart JH et al (1984) Upper Proterozoic and Cambrian Rocks in the Caborca Region, Sonora, Mexico—physical stratigraphy, biostratigraphy, paleocurrent studies and regional relations. US Geol Surv Prof Pap 1309:1–36

    Google Scholar 

  • Tarhan LG et al (2016) Exceptional preservation of soft-bodied Ediacara biota promoted by silica-rich oceans. Geology 44:951–954

    Article  Google Scholar 

  • Tojo B et al (2007) Theoretical morphology of quilt structures in Ediacaran fossils. In: Vickers-Rich P, Komarower P (eds) The rise and fall of the Ediacaran biota. Geological Society of London Special Publications 286, London, pp 399–404

    Google Scholar 

  • Vinther J (2015) The origins of molluscs. Palaeontology 58(1):19–34

    Article  Google Scholar 

  • Williston SW (1914) Water reptiles of the past and present. Chicago University Press, Chicago

    Book  Google Scholar 

  • Zhuravlev AY et al (2012) New finds of skeletal fossils in the terminal Neoproterozoic of the Siberian Platform and Spain. Acta Palaeontol Pol 57(1):205–224

    Article  Google Scholar 

  • Zittel KA (1913) Text-book of paleontology. Macmillian, London

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

McMenamin, M.A.S. (2018). Clemente Biota. In: Deep Time Analysis. Springer Geology. Springer, Cham. https://doi.org/10.1007/978-3-319-74256-4_3

Download citation

Publish with us

Policies and ethics