Skip to main content

Alternation, Sparsity and Sensitivity: Combinatorial Bounds and Exponential Gaps

  • Conference paper
  • First Online:
Algorithms and Discrete Applied Mathematics (CALDAM 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10743))

Included in the following conference series:

Abstract

The well-known Sensitivity Conjecture regarding combinatorial complexity measures on Boolean functions states that for any Boolean function \(f:\{0,1\}^n\rightarrow \{0,1\}\), block sensitivity of f is polynomially related to sensitivity of f (denoted by \(\mathsf {s}(f)\)). From the complexity theory side, the Xor Log-Rank Conjecture states that for any Boolean function, \(f:\{0,1\}^n\rightarrow \{0,1\}\) the communication complexity of a related function \(f^{\oplus }:\{0,1\}^n\times \{0,1\}^n\rightarrow \{0,1\}\), (defined as \(f^{\oplus }(x,y) = f(x \oplus y)\)) is bounded by polynomial in logarithm of the sparsity of f (the number of non-zero Fourier coefficients for f, denoted by \(\mathsf {sparsity}(f)\)). Both the conjectures play a central role in the domains in which they are studied.

A recent result of Lin and Zhang (2017) implies that to confirm the above two conjectures it suffices to upper bound alternation of f (denoted \(\mathsf {alt}(f)\)) for all Boolean functions f by polynomial in \(\mathsf {s}(f)\) and logarithm of \(\mathsf {sparsity}(f)\), respectively. In this context, we show the following results:

  • We show that there exists a family of Boolean functions for which \(\mathsf {alt}(f)\) is at least exponential in \(\mathsf {s}(f)\) and \(\mathsf {alt}(f)\) is at least exponential in \(\log \mathsf {sparsity}(f)\). Enroute to the proof, we also show an exponential gap between \(\mathsf {alt}(f)\) and the decision tree complexity of f, which might be of independent interest.

  • As our main result, we show that, despite the above exponential gap between \(\mathsf {alt}(f)\) and \(\log \mathsf {sparsity}(f)\), the Xor Log-Rank Conjecture is true for functions with the alternation upper bounded by \({\mathsf {poly}}(\log n)\). It is easy to observe that the Sensitivity Conjecture is also true for this class of functions.

  • The starting point for the above result is the observation (derived from Lin and Zhang (2017)) that for any Boolean function f, \(\mathsf {deg}(f) \le \mathsf {alt}(f)\mathsf {deg_{{\mathbb {F}}_2}}(f)^2\) where \(\mathsf {deg}(f)\) and \(\mathsf {deg_{{\mathbb {F}}_2}}(f)\) are the degrees of f over \({\mathbb {R}}\) and \({\mathbb {F}}_2\). We give two further applications of this bound: (1) We show that Boolean functions with bounded alternation have high sparsity (\(\varOmega (\sqrt{\mathsf {deg}(f)})\)), thus partially answering a question of Kulkarni and Santha (2013). (2) We observe that the above relation improves the upper bound for influence to \(\mathsf {deg_{{\mathbb {F}}_2}}(f)^2 \cdot \mathsf {alt}(f)\) improving Guo and Komargodski (2017).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    When f is monotone, it is known that \(\textsf {DT}(f) \le \mathsf {s}(f)^2\) and \(\mathsf {s}(f) \le \mathsf {deg_{{\mathbb {F}}_2}}(f)\) (Corollary 5 and Proposition 4 of [5]). Proposition 4 of [5] though states that \(\mathsf {s}(f) \le \mathsf {deg}(f)\) for any monotone f, the argument is valid for \(\mathsf {deg_{{\mathbb {F}}_2}}(f)\) also. Since, \(\mathsf {deg}(f) \le \textsf {DT}(f)\) (cf. [5]), \(\mathsf {deg}(f) \le \mathsf {deg_{{\mathbb {F}}_2}}(f)^2\).

  2. 2.

    Using the facts that \(\mathsf {CC}_\oplus (f) \le 2\mathsf{DT}(f)\) [19] and \(\textsf {DT}(f) \le \mathsf {deg}(f)^4\) [5], \(\mathsf {CC}_\oplus (f) = O(\mathsf {deg}(f)^4)\) implying \(\mathsf {CC}_\oplus (f) = O({\mathsf {poly}}(\log \mathsf {sparsity}(f))\).

References

  1. Ambainis, A., Prūsis, K., Vihrovs, J.: Sensitivity versus certificate complexity of Boolean functions. In: Kulikov, A.S., Woeginger, G.J. (eds.) CSR 2016. LNCS, vol. 9691, pp. 16–28. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-34171-2_2

    Google Scholar 

  2. Bafna, M., Lokam, S.V., Tavenas, S., Velingker, A.: On the sensitivity conjecture for read-\(k\) formulas. In: 41st International Symposium on Mathematical Foundations of Computer Science, MFCS 2016 - Kraków, Poland, pp. 16:1–16:14 (2016)

    Google Scholar 

  3. Bernasconi, A., Codenotti, B.: Spectral analysis of Boolean functions as a graph eigenvalue problem. IEEE Trans. Comput. 48(3), 345–351 (1999)

    Article  MathSciNet  Google Scholar 

  4. Blais, E., Canonne, C.L., Oliveira, I.C., Servedio, R.A., Tan, L.-Y.: Learning circuits with few negations. In: Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques, APPROX/RANDOM 2015, 24–26 August 2015, Princeton, NJ, USA, pp. 512–527 (2015)

    Google Scholar 

  5. Buhrman, H., de Wolf, R.: Complexity measures and decision tree complexity: a survey. Theor. Comput. Sci. 288(1), 21–43 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  6. Karthik, C.S., Tavenas, S.: On the sensitivity conjecture for disjunctive normal forms. In: 36th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science, FSTTCS 2016, 13–15 December 2016, Chennai, India, pp. 15:1–15:15 (2016)

    Google Scholar 

  7. Chakraborty, S.: On the sensitivity of cyclically-invariant Boolean functions. Discrete Math. Theor. Comput. Sci. 13(4), 51–60 (2011)

    MathSciNet  MATH  Google Scholar 

  8. Cook, S., Dwork, C., Reischuk, R.: Upper and lower time bounds for parallel random access machines without simultaneous writes. SIAM J. Comput. 15(1), 87–97 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  9. Gilmer, J., Koucký, M., Saks, M.E.: A new approach to the sensitivity conjecture. In: Proceedings of the 2015 Conference on Innovations in Theoretical Computer Science, ITCS 2015, pp. 247–254. ACM, New York (2015)

    Google Scholar 

  10. Gopalan, P., Servedio, R.A., Wigderson, A.: Degree and sensitivity: tails of two distributions. In: 31st Conference on Computational Complexity, CCC 2016, Tokyo, Japan, pp. 13:1–13:23 (2016)

    Google Scholar 

  11. Guo, S., Komargodski, I.: Negation-limited formulas. Theor. Comput. Sci. 660, 75–85 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  12. Hatami, P., Kulkarni, R., Pankratov, D.: Variations on the sensitivity conjecture. Theor. Comput. Libr. Grad. Surv. 4, 1–27 (2011)

    Google Scholar 

  13. Jukna, S.: Boolean Function Complexity: Advances and Frontiers. Algorithms and Combinatorics. Springer, Heidelberg (2012)

    Book  MATH  Google Scholar 

  14. Kenyon, C., Kutin, S.: Sensitivity, block sensitivity, and \(\ell \)-block sensitivity of Boolean functions. Inf. Comput. 189(1), 43–53 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  15. Kulkarni, R., Santha, M.: Query complexity of matroids. In: Spirakis, P.G., Serna, M. (eds.) CIAC 2013. LNCS, vol. 7878, pp. 300–311. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38233-8_25

    Chapter  Google Scholar 

  16. Lin, C., Zhang, S.: Sensitivity conjecture and log-rank conjecture for functions with small alternating numbers. In: 44th International Colloquium on Automata, Languages, and Programming (ICALP 2017), vol. 80, pp. 51:1–51:13, Dagstuhl, Germany (2017)

    Google Scholar 

  17. Linial, N., Mansour, Y., Nisan, N.: Constant depth circuits, fourier transform, and learnability. J. ACM 40(3), 607–620 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  18. Markov, A.A.: On the inversion complexity of a system of functions. J. ACM 5(4), 331–334 (1958)

    Article  MathSciNet  MATH  Google Scholar 

  19. Montanaro, A., Osborne, T.: On the communication complexity of XOR functions. CoRR abs/0909.3392 (2009)

    Google Scholar 

  20. Nisan, N.: CREW PRAMs and decision trees. SIAM J. Comput. 20(6), 999–1007 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  21. Nisan, N., Szegedy, M.: On the degree of Boolean functions as real polynomials. In: Proceedings of the 24th Annual ACM Symposium on Theory of Computing, STOC 1992, pp. 462–467. ACM, New York (1992)

    Google Scholar 

  22. O’Donnell, R.: Analysis of Boolean Functions. Cambridge University Press, New York (2014)

    Book  MATH  Google Scholar 

  23. Simon, H.-U.: A tight \(\omega \)(loglog n)-bound on the time for parallel Ram’s to compute nondegenerated boolean functions. In: Karpinski, M. (ed.) FCT 1983. LNCS, vol. 158, pp. 439–444. Springer, Heidelberg (1983). https://doi.org/10.1007/3-540-12689-9_124

    Chapter  Google Scholar 

  24. Tal, A.: Properties and applications of Boolean function composition. In: Proceedings of the 4th Conference on Innovations in Theoretical Computer Science, ITCS 2013, pp. 441–454. ACM, New York (2013)

    Google Scholar 

  25. Tsang, H.Y., Wong, C.H., Xie, N., Zhang, S.: Fourier sparsity, spectral norm, and the log-rank conjecture. In: 54th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2013, 26–29 October 2013, Berkeley, CA, USA, pp. 658–667 (2013)

    Google Scholar 

  26. Turán, G.: The critical complexity of graph properties. Inf. Process. Lett. 18(3), 151–153 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  27. Zhang, Z., Shi, Y.: Communication complexities of symmetric XOR functions. Quantum Inf. Comput. 9(3), 255–263 (2009)

    MathSciNet  MATH  Google Scholar 

  28. Zhang, Z., Shi, Y.: On the parity complexity measures of Boolean functions. Theor. Comput. Sci. 411(26–28), 2612–2618 (2010)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the anonymous reviewers for constructive comments which improved the presentation of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krishnamoorthy Dinesh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dinesh, K., Sarma, J. (2018). Alternation, Sparsity and Sensitivity: Combinatorial Bounds and Exponential Gaps. In: Panda, B., Goswami, P. (eds) Algorithms and Discrete Applied Mathematics. CALDAM 2018. Lecture Notes in Computer Science(), vol 10743. Springer, Cham. https://doi.org/10.1007/978-3-319-74180-2_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-74180-2_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-74179-6

  • Online ISBN: 978-3-319-74180-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics