Skip to main content

Photonics in Nature: From Order to Disorder

  • Chapter
  • First Online:
Functional Surfaces in Biology III

Part of the book series: Biologically-Inspired Systems ((BISY,volume 10))

Abstract

The most vibrant and striking colours in living organisms are often caused by a combination of pigments and nano-scale transparent architectures, which interact with light to produce so-called structural colours. These colours are the result of light interfering with the nano-scale structures that are present in the materials. Such colour-producing structures are not perfect, and irregularities in the arrangements (disorder) are present in many organisms. However, disorder in natural structures is not detrimental but functional, as it allows a broader range of optical effects. This chapter reviews and attempts to classify structurally coloured organisms, highlighting the influence that disorder has on their visual appearance. It also showcases how photonic systems, such as the blue Morpho butterfly and the white Cyphochilus beetle, are capable of obtaining optical properties (long-distance visibility and whiteness, respectively) where disorder seems to be highly optimized, indicating that disorder is important for obtaining complex visual effects in natural systems.

The chapter first introduces the mathematical concepts required for analysing disordered systems, such as the Fourier transform and the structure factor. Ordered and disordered natural photonic systems are then reviewed. This is followed by examples of completely disordered structures responsible for white appearances. Finally, we review the possibilities of hierarchical organisation and pixelated surfaces to widen the range of optical appearances.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Åkerlind, C., Arwin, H., Hallberg, T., Landin, J., Gustafsson, J., Kariis, H., & Järrendahl, K. (2015). Scattering and polarization properties of the scarab beetle Cyphochilus insulanus cuticle. Applied Optics, 54, 6037–6045.

    Article  CAS  PubMed  Google Scholar 

  • Akkermans, E., & Montambaux, G. (2007). Mesoscopic physics of electrons and photons. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Almeida, S. P., & Fujii, H. (1979). Fourier transform differences and averaged similarities in diatoms. Applied Optics, 18, 1663–1667.

    Article  CAS  PubMed  Google Scholar 

  • Anderson, T. F., & Richards, A. G. (1942). An electron microscope study of some structural colors of insects. Journal of Applied Physics, 13, 748–758.

    Article  CAS  Google Scholar 

  • Arwin, H., Magnusson, R., Landin, J., & Järrendahl, K. (2012). Chirality-induced polarization effects in the cuticle of scarab beetles: 100 years after Michelson. Philosophical Magazine, 92, 1583–1599.

    Article  CAS  Google Scholar 

  • Bálint, Z., Kertész, K., Piszter, G., Vértesy, Z., & Biró, L. P. (2012). The well-tuned blues: The role of structural colours as optical signals in the species recognition of a local butterfly fauna (Lepidoptera: Lycaenidae: Polyommatinae). Journal of the Royal Society Interface, 9, 1745–1756.

    Google Scholar 

  • Bell, G. R. R., Mäthger, L. M., Gao, M., Senft, S. L., Kuzirian, A. M., Kattawar, W. G., & Hanlon, R. T. (2014). Diffuse white structural coloration from multilayer reflectors in a squid. Advanced Materials, 26, 4352–4356.

    Article  CAS  PubMed  Google Scholar 

  • Benedek, G. B. (1971). Theory of transparency of the eye. Applied Optics, 10, 459–473.

    Article  CAS  PubMed  Google Scholar 

  • Berthier, S., Boulenguez, J., & Bálint, Z. (2007). Multiscaled polarization effects in Suneve coronata (Lepidoptera) and other insects: Application to anti-counterfeiting of banknotes. Applied Physics A, 86, 123–130.

    Article  CAS  Google Scholar 

  • Bossard, J. A., Lin, L., & Werner, D. H. (2016). Evolving random fractal Cantor superlattices for the infrared using a genetic algorithm. Journal of the Royal Society Interface, 13, 20150975.

    Google Scholar 

  • Burresi, M., Cortese, L., Pattelli, L., Kolle, M., Vukusic, P., Wiersma, D. S., Steiner, U., & Vignolini, S. (2014). Bright-white beetle scales optimise multiple scattering of light. Scientific Reports, 4(6075).

    Google Scholar 

  • Byrnes, S. J. (2016). Multilayer optical calculations. arXiv e-prints, arXiv:1603.02720v2.

    Google Scholar 

  • Caveney, S. (1971). Cuticle reflectivity and optical activity in scarab beetles: The role of uric acid. Proceedings of the Royal Society of London. Series B, 178, 205–225.

    Google Scholar 

  • Chandler, C. J., Wilts, B. D., Vignolini, S., Brodie, J., Steiner, U., Rudall, P. J., Glover, B. J., Gregory, T., & Walker, R. H. (2015). Structural colour in Chondrus crispus. Scientific Reports, 5, 11645.

    Article  PubMed  PubMed Central  Google Scholar 

  • Chandler, C. J., Wilts, B. D., Brodie, J., & Vignolini, S. (2017). Structural color in marine algae. Advanced Optical Materials, 5, 1600646.

    Google Scholar 

  • Cortese, L., Pattelli, L., Utel, F., Vignolini, S., Burresi, M., & Wiersma, D. S. (2015). Light transport: Anisotropic light transport in white beetle scales. Advanced Optical Materials, 3, 1337–1341.

    Article  CAS  Google Scholar 

  • De Tommasi, E., Rea, I., Mocella, V., Moretti, L., De Stefano, M., Rendina, I., & De Stefano, L. (2010). Multi-wavelength study of light transmitted through a single marine centric diatom. Optics Express, 18, 12203–12212.

    Article  CAS  PubMed  Google Scholar 

  • Del Río, L. F., Arwin, H., & Järrendahl, K. (2016). Polarizing properties and structure of the cuticle of scarab beetles from the Chrysina genus. Physical Review E, 94, 012409.

    Article  Google Scholar 

  • Dellieu, L., Cael, G., Louette, M., Herman, A., Deparis, O., & Sarrazin, M. (2017). Light coherence time modifies color perception of living beings. Materials Today, 4, 4952–4958.

    Article  Google Scholar 

  • Denton, E. J. (1970). Review lecture: On the organization of reflecting surfaces in some marine animals. Philosophical Transactions of the Royal Society of London. B, 258, 285–313.

    Google Scholar 

  • Denton, E. J., & Land, M. F. (1971). Mechanism of reflexion in silvery layers of fish and cephalopods. Proceedings of the Royal Society of London. Series B, 178, 43–61.

    Google Scholar 

  • Divitt, S., & Novotny, L. (2015). Spatial coherence of sunlight and its implications for light management in photovoltaics. Optica, 2, 95–103.

    Article  Google Scholar 

  • Dong, B. Q., Liu, X. H., Zhan, T. R., Jiang, L. P., Yin, H. W., Liu, F., & Zi, J. (2010). Structural coloration and photonic pseudogap in natural random close-packing photonic structures. Optics Express, 18, 14430–14438.

    Article  CAS  PubMed  Google Scholar 

  • Donges, A. (1998). The coherence length of black-body radiation. European Journal of Physics, 19, 245–249.

    Article  CAS  Google Scholar 

  • Doucet, S. M., & Meadows, M. G. (2009). Iridescence: A functional perspective. Journal of the Royal Society Interface, 6, 115–132.

    Google Scholar 

  • Eliason, C. M., & Shawkey, M. D. (2012). A photonic heterostructure produces diverse iridescent colours in duck wing patches. Journal of the Royal Society Interface, 9, 2279–2289.

    Google Scholar 

  • Froufe-Pérez, L. S., Engel, M., Damasceno, P. F., Muller, N., Haberko, J., Glotzer, S. C., & Scheffold, F. (2016). Role of short-range order and hyperuniformity in the formation of band gaps in disordered photonic materials. Physical Review Letters, 117, 053902.

    Article  CAS  PubMed  Google Scholar 

  • Fuhrmann, T., Landwehr, S., El Rharbi-Kucki, M., & Sumper, M. (2004). Diatoms as living photonic crystals. Applied Physics B: Lasers and Optics, 78, 257–260.

    Article  CAS  Google Scholar 

  • Galusha, J. W., Richey, L. R., Gardner, J. S., Cha, J. N., & Bartl, M. H. (2008). Discovery of a diamond-based photonic crystal structure in beetle scales. Physical Review E, 77, 050904.

    Article  CAS  Google Scholar 

  • Ghiradella, H. (1991). Light and color on the wing: Structural colors in butterflies and moths. Applied Optics, 30, 3492–3500.

    Article  CAS  PubMed  Google Scholar 

  • Ghoshal, A., Eck, E., & Morse, D. E. (2016a). Biological analogs of RGB pixelation yield white coloration in giant clams. Optica, 3, 108–111.

    Article  CAS  Google Scholar 

  • Ghoshal, A., Eck, E., Gordon, M., & Morse, D. E. (2016b). Wavelength-specific forward scattering of light by Bragg-reflective iridocytes in giant clams. Journal of the Royal Society Interface, 13, 20160285.

    Google Scholar 

  • Giraldo, M. A., Yoshioka, S., Liu, C., & Stavenga, D. G. (2016). Coloration mechanisms and phylogeny of Morpho butterflies. The Journal of Experimental Biology, 219, 3936–3944.

    Article  CAS  PubMed  Google Scholar 

  • Glover, B. J., & Whitney, H. M. (2010). Structural colour and iridescence in plants: The poorly studied relations of pigment colour. Annals of Botany, 105, 505–511.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gordon, R., Losic, D., Tiffany, M. A., Nagy, S. S., & Sterrenburg, F. A. S. (2009). The glass menagerie: Diatoms for novel applications in nanotechnology. Trends in Biotechnology, 27, 116–127.

    Article  CAS  PubMed  Google Scholar 

  • Gould, K. S., & Lee, D. W. (1996). Physical and ultrastructural basis of blue leaf iridescence in four Malaysian understory plants. American Journal of Botany, 83, 45–50.

    Article  Google Scholar 

  • Graham, R. M., Lee, D. W., & Norstog, K. (1993). Physical and ultrastructural basis of blue leaf iridescence in two neotropical ferns. American Journal of Botany, 80, 198–203.

    Article  Google Scholar 

  • Gur, D., Leshem, B., Pierantoni, M., Farstey, V., Oron, D., Weiner, S., & Addadi, L. (2015). Structural basis for the brilliant colors of the sapphirinid copepods. Journal of the American Chemical Society, 137, 8408–8411.

    Article  CAS  PubMed  Google Scholar 

  • Hébant, C., & Lee, D. W. (1984). Ultrastructural basis and developmental control of blue iridescence in Selaginella leaves. American Journal of Botany, 71, 216–219.

    Article  Google Scholar 

  • Hecht, E. (2017). Optics (5th ed.). Essex: Pearson.

    Google Scholar 

  • Hunt, T., Bergsten, J., Levkanicova, Z., Papadopoulou, A., John, O. S., Wild, R., Hammond, P. M., Ahrens, D., Balke, M., Caterino, M. S., et al. (2007). A comprehensive phylogeny of beetles reveals the evolutionary origins of a superradiation. Science, 318, 1913–1916.

    Article  CAS  PubMed  Google Scholar 

  • Hwang, J., Song, M. H., Park, B., Nishimura, S., Toyooka, T., Wu, J. W., Takanishi, J., Ishikawa, K., & Takezoe, H. (2005). Electro-tunable optical diode based on photonic bandgap liquid-crystal heterojunctions. Nature Materials, 4, 383–387.

    Article  CAS  PubMed  Google Scholar 

  • Ingram, A. L., & Parker, A. R. (2008). A review of the diversity and evolution of photonic structures in butterflies, incorporating the work of John Huxley (The Natural History Museum, London from 1961 to 1990). Philosophical Transactions of the Royal Society B, 363, 2465–2480.

    Article  CAS  Google Scholar 

  • Jacobs, M., Lopez-Garcia, M., Phrathep, O. P., Lawson, T., Oulton, R., & Whitney, H. M. (2016). Photonic multilayer structure of Begonia chloroplasts enhances photosynthetic efficiency. Nature Plants, 2, 16162.

    Article  CAS  PubMed  Google Scholar 

  • Jewell, S. A., Vukusic, P., & Roberts, N. W. (2007). Circularly polarized colour reflection from helicoidal structures in the beetle Plusiotis boucardi. New Journal of Physics, 9, 99.

    Article  Google Scholar 

  • Jiang, T., Peng, Z., Wu, W., Shi, T., & Liao, G. (2014). Gas sensing using hierarchical micro/nanostructures of Morpho butterfly scales. Sensors and Actuators, A: Physical, 213, 63–69.

    Article  CAS  Google Scholar 

  • Joannopoulos, J. D., Johnson, S. G., Winn, J. N., & Meade, R. D. (2008). Photonic crystals: Molding the flow of light. Princeton: Princeton University Press.

    Google Scholar 

  • Johansen, V. E. (2014). Optical role of randomness for structured surfaces. Applied Optics, 53, 2405–2415.

    Article  PubMed  Google Scholar 

  • Johansen, V. E., Thamdrup, L. H., Smistrup, K., Nielsen, T., Sigmund, O., & Vukusic, P. (2015). Designing visual appearance using a structured surface. Optica, 2, 239–245.

    Article  CAS  Google Scholar 

  • Johnson, S., & Joannopoulos, J. (2001). Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis. Optics Express, 8, 173–190.

    Article  CAS  PubMed  Google Scholar 

  • Jordan, T. M., Partridge, J. C., & Roberts, N. W. (2012). Non-polarizing broadband multilayer reflectors in fish. Nature Photonics, 6, 759–763.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jordan, T. M., Wilby, D., Chiou, T.-H., Feller, K. D., Caldwell, R. L., Cronin, T. W., & Roberts, N. W. (2016). A shape-anisotropic reflective polarizer in a stomatopod crustacean. Scientific Reports, 6, 21744.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kientz, B., Luke, S., Vukusic, P., Péteri, R., Beaudry, C., Renault, T., Simon, D., Mignot, T., & Rosenfeld, E. (2016). A unique self-organization of bacterial sub-communities creates iridescence in Cellulophaga lytica colony biofilms. Scientific Reports, 6, 19906.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kieu, K., Li, C., Fang, Y., Cohoon, G., Herrera, O. D., Hildebrand, M., Sandhage, K. H., & Norwood, R. A. (2014). Structure-based optical filtering by the silica microshell of the centric marine diatom Coscinodiscus wailesii. Optics Express, 22, 15992–15999.

    Article  CAS  PubMed  Google Scholar 

  • Kinoshita, S. (2008). Structural colors in the realm of nature. Singapore: World Scientific Publishing.

    Book  Google Scholar 

  • Kinoshita, S., & Yoshioka, S. (2005). Structural colors in nature: The role of regularity and irregularity in the structure. ChemPhysChem, 6, 1442–1459.

    Article  CAS  PubMed  Google Scholar 

  • Kinoshita, S., Yoshioka, S., Fujii, Y., & Okamoto, N. (2002). Photophysics of structural color in the Morpho butterflies. Forma, 17, 103–121.

    Google Scholar 

  • Kinoshita, S., Yoshioka, S., & Miyazaki, J. (2008). Physics of structural colors. Reports on Progress in Physics, 71, 076401.

    Article  Google Scholar 

  • Land, M. F. (1972). The physics and biology of animal reflectors. Progress in Biophysics and Molecular Biology, 24, 75–106.

    Article  CAS  PubMed  Google Scholar 

  • Lathi, B. P. (1998). Signal processing and linear systems. Oxford: Oxford University Press.

    Google Scholar 

  • Lee, D. W. (1991). Ultrastructural basis and function of iridescent blue colour of fruits in Elaeocarpus. Nature, 349, 260–262.

    Article  Google Scholar 

  • Lee, R. T., & Smith, G. S. (2009). Detailed electromagnetic simulation for the structural color of butterfly wings. Applied Optics, 48, 4177–4190.

    Article  PubMed  Google Scholar 

  • Li, L., Kolle, S., Weaver, J. C., Ortiz, C., Aizenberg, J., & Kolle, M. (2015). A highly conspicuous mineralized composite photonic architecture in the translucent shell of the blue-rayed limpet. Nature Communications, 6, 6322.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, F., Yin, H., Dong, B., Qing, Y., Zhao, L., Meyer, S., & Liu, X. (2008). Inconspicuous structural coloration in the elytra of beetles Chlorophila obscuripennis (Coleoptera). Physical Review E, 77(012901).

    Google Scholar 

  • Lowry, J. B., & Lee, D. W. (1975). Physical basis and ecological significance of iridescence in blue plants. Nature, 254, 50–51.

    Article  Google Scholar 

  • Luke, S. M., Hallam, B. T., & Vukusic, P. (2010). Structural optimization for broadband scattering in several ultra-thin white beetle scales. Applied Optics, 49, 4246–4254.

    Article  PubMed  Google Scholar 

  • Mason, C. W. (1923). Structural colors in feathers. I. The Journal of Physical Chemistry, 27, 201–251.

    Article  Google Scholar 

  • Mäthger, L. M., Denton, E. J., Marshall, N. J., & Hanlon, R. T. (2009). Mechanisms and behavioural functions of structural coloration in cephalopods. Journal of the Royal Society Interface, 6, 149–163.

    Google Scholar 

  • Michelson, A. A. (1911). LXI. On metallic colouring in birds and insects. Philosophical Magazine Series, 621, 554–567.

    Article  Google Scholar 

  • Michielsen, K., & Stavenga, D. G. (2008). Gyroidcuticular structures in butterfly wing scales: Biological photonic crystals. J. Royal Soc. Interface, 5, 85–94.

    Article  CAS  Google Scholar 

  • Michielsen, K., De Raedt, H., & Stavenga, D. G. (2010). Reflectivity of the gyroidbiophotonic crystals in the ventral wing scales of the green hairstreak butterfly, Callophrys rubi. Journal of the Royal Society Interface, 7, 765–771.

    Google Scholar 

  • Middleton, R., Steiner, U., & Vignolini, S. (2017). Bio-mimetic structural colour using biopolymers. In: Bio-inspired polymers, ed by Bruns, N., Kilbinger, A.F.M. Cambridge: The Royal Society of Chemistry, 555–585.

    Google Scholar 

  • Mouchet, S. R., Van Hooijdonk, E., Welch, V. L., Louette, P., Colomer, J.-F., Su, B.-L., & Deparis, O. (2016). Liquid-induced colour change in a beetle: The concept of a photonic cell. Scientific Reports, 6(19322).

    Google Scholar 

  • Nakamura, E., Yoshioka, S., & Kinoshita, S. (2008). Structural color of rock dove’s neck feather. Journal of the Physical Society of Japan, 77, 124801.

    Article  CAS  Google Scholar 

  • Neville, A. C., & Caveney, S. (1969). Scarabaeid beetle exocuticle as an optical analogue of cholesteric liquid crystals. Biological Reviews, 44, 531–562.

    Article  CAS  PubMed  Google Scholar 

  • Nijhout, H. F. (1985). The developmental physiology of color patterns in Lepidoptera. Advances in Insect Physiology, 18, 181–247.

    Article  CAS  Google Scholar 

  • Noh, H., Liew, S. F., Saranathan, V., Mochrie, S. G. J., Prum, R. O., Dufresne, E. R., & Cao, H. (2010). How noniridescent colors are generated by quasi-ordered structures of bird feathers. Advanced Materials, 22, 2871–2880.

    Article  CAS  PubMed  Google Scholar 

  • Noyes, J. A., Vukusic, P., & Hooper, I. R. (2007). Experimental method for reliably establishing the refractive index of buprestid beetle exocuticle. Optics Express, 15, 4351–4358.

    Article  CAS  PubMed  Google Scholar 

  • Noyes, J., Sumper, M., & Vukusic, P. (2008). Light manipulation in a marine diatom. Journal of Materials Research, 23, 3229–3235.

    Article  CAS  Google Scholar 

  • Onelli, O. D., van de Kamp, T., Skepper, J. N., Powell, J., dos Santos Rolo, T., Baumbach, T., & Vignolini, S. (2017). Development of structural colour in leaf beetles. Scientific Reports, 7, 1373.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oskooi, A. F., Roundy, D., Ibanescu, M., Bermel, P., Joannopoulos, J. D., & Johnson, S. G. (2010). Meep: A flexible free-software package for electromagnetic simulations by the FDTD method. Computer Physics Communications, 181, 687–702.

    Article  CAS  Google Scholar 

  • Parker, A. R. (1998). The diversity and implications of animal structural colours. The Journal of Experimental Biology, 201, 2343–2347.

    CAS  PubMed  Google Scholar 

  • Parker, A. R. (2000). 515 million years of structural colour. Journal of Optics A: Pure and Applied Optics, 2, R15–R28.

    Google Scholar 

  • Parker, A. R. (2005). A geological history of reflecting optics. Journal of the Royal Society Interface, 2, 1–17.

    Google Scholar 

  • Parker, A. R., McPhedran, R. C., McKenzie, D. R., & Botten, L. C. (2001). Photonic engineering. Aphrodite’s iridescence. Nature, 409, 36–37.

    Article  CAS  PubMed  Google Scholar 

  • Prum, R.O. (2006). Anatomy, physics, and evolution of structural colors. In: Bird coloration, Vol. 1, ed. by Hill, G.E., McGraw, K. J. Cambridge: Harvard University Press, 295–353.

    Google Scholar 

  • Prum, R. O., & Torres, R. H. (2003a). A fourier tool for the analysis of coherent light scattering by bio-optical nanostructures. Integrative and Comparative Biology, 43, 591–602.

    Article  PubMed  Google Scholar 

  • Prum, R. O., & Torres, R. H. (2003b). Structural colouration of avian skin: Convergent evolution of coherently scattering dermal collagen arrays. The Journal of Experimental Biology, 206, 2409–2429.

    Article  PubMed  Google Scholar 

  • Prum, R.O. and Torres, R.H. (2013). Fourier blues: Structural coloration of biological tissues. In: Excursions in harmonic analysis, Vol. 2, ed. by Andrews, T.D., Balan, R., Benedetto, J.J., Czaja, W., Okoudjou, K.A. New York: Springer, 401–421.

    Google Scholar 

  • Prum, R. O., Morrison, R. L., & Ten Eyck, G. R. (1994). Structural color production by constructive reflection from ordered collagen arrays in a bird (Philepitta castanea: Eurylaimidae). Journal of Morphology, 222, 61–72.

    Article  Google Scholar 

  • Prum, R. O., Torres, R. H., Williamson, S., & Dyck, J. (1998). Coherent light scattering by blue feather barbs. Nature, 396, 28–39.

    Article  CAS  Google Scholar 

  • Prum, R. O., Torres, R., Williamson, S., & Dyck, J. (1999). Two-dimensional Fourier analysis of the spongy medullary keratin of structurally coloured feather barbs. Proceedings of the Royal Society of London. Series B, 266, 13–22.

    Google Scholar 

  • Rayleigh, L. (1919). VII. On the optical character of some brilliant animal colours. Philosophical Magazine Series, 6(37), 98–111.

    Google Scholar 

  • Saba, M., Wilts, B. D., Hielscher, J., & Schröder-Turk, G. E. (2014). Absence of circular polarisation in reflections of butterfly wing scales with chiral Gyroid structure. Materials Today, 1, 193–208.

    Article  Google Scholar 

  • Saito, A., Yoshioka, S.-Y., & Kinoshita, S. (2004). Reproduction of the Morpho butterfly’s blue: Arbitration of contradicting factors. Proceedings of SPIE – The International Society for Optical Engineering, 5526, 188–194.

    Google Scholar 

  • Saito, A., Miyamura, Y., Nakajima, M., Ishikawa, Y., Sogo, K., Kuwahara, Y., & Hirai, Y. (2006). Reproduction of the Morpho blue by nanocasting lithography. Journal of Vacuum Science and Technology B, 24, 3248–3251.

    Article  CAS  Google Scholar 

  • Saito, A., Yonezawa, M., Murase, J., Juodkazis, S., Mizeikis, V., Akai-Kasaya, M., & Kuwahara, Y. (2011). Numerical analysis on the optical role of nano-randomness on the Morpho butterfly’s scale. Journal of Nanoscience and Nanotechnology, 11, 2785–2792.

    Article  CAS  PubMed  Google Scholar 

  • Saito, A., Shibuya, T., Yonezawa, M., Akai-Kasaya, M., & Kuwahara, Y. (2013). Simulation analysis on the optical role of the number of randomly arranged nano-trees on the Morpho butterfly’s scale. Proceedings of SPIE – The International Society for Optical Engineering, 8686. https://doi.org/10.1117/12.2012036.

  • Schoen, A. H. (1970). Three dimensional Euclidean space partitioned into interpenetrating labyrinths by infinite periodic minimal surfaces without self intersections, NASA-TN-D-5541, C-98. Cambridge: NASA Electronics Research Center.

    Google Scholar 

  • Schröder-Turk, G. E., Wickham, S., Averdunk, H., Brink, F., Gerald, J. D. F., Poladian, L., & Hyde, S. T. (2011). The chiral structure of porous chitin within the wing-scales of Callophrys rubi. Journal of Structural Biology, 174, 290–295.

    Article  CAS  PubMed  Google Scholar 

  • Schultz, T. D., & Bernard, G. D. (1989). Pointillistic mixing of interference colours in cryptic tiger beetles. Nature, 337, 72–73.

    Article  Google Scholar 

  • Seago, A. E., Brady, P., Vigneron, J. P., & Schultz, T. D. (2009). Gold bugs and beyond: A review of iridescence and structural colour mechanisms in beetles (Coleoptera). Journal of the Royal Society Interface, 6, 165–184.

    Google Scholar 

  • Sellers, S. R., Man, W., Saba, M., & Florescu, M. (2017). Local self-uniformity in photonic networks. Nature Communications, 8, 14439.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma, V., Crne, M., Park, J. O., & Srinivasarao, M. (2009). Structural origin of circularly polarized iridescence in jeweled beetles. Science, 325, 449–451.

    Article  CAS  PubMed  Google Scholar 

  • Shawkey, M. D., Saranathan, V., Palsdottir, H., Crum, J., Ellisman, M. H., Auer, M., & Prum, R. O. (2009). Electron tomography, three-dimensional Fourier analysis and colour prediction of a three-dimensional amorphous biophotonic nanostructure. Journal of the Royal Society Interface, 6, 213–220.

    Google Scholar 

  • Song, B., Johansen, V. E., Sigmund, O., & Shin, J. H. (2017). Reproducing the hierarchy of disorder for Morpho-inspired, broad-angle color reflection. Scientific Reports, 7, 46023.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Starkey, T., & Vukusic, P. (2013). Light manipulation principles in biological photonic systems. Nanophotonics, 2, 289–307.

    Article  Google Scholar 

  • Stavenga, D. G., Leertouwer, H. L., Marshall, N. J., & Osorio, D. (2011a). Dramatic colour changes in a bird of paradise caused by uniquely structured breast feather barbules. Proceedings of the Royal Society of London. Series B, Biological Sciences 278, 2098–2104.

    Google Scholar 

  • Stavenga, D. G., Wilts, B. D., Leertouwer, H. L., & Hariyama, T. (2011b). Polarized iridescence of the multilayered elytra of the Japanese jewel beetle, Chrysochroa fulgidissima. Philosophical Transactions of the Royal Society B: Biological Sciences, 366, 709–723.

    Google Scholar 

  • Steinbrecht, R. A., Mohren, W., & Schneider, D. (1985). Cuticular interference reflectors in the golden pupae of danaine butterflies. Proceedings of the Royal Society of London. Series B, 226, 367–390.

    Google Scholar 

  • Strout, G., Russell, S. D., Pulsifer, D. P., Erten, S., Lakhtakia, A., & Lee, D. W. (2013). Silica nanoparticles aid in structural leaf coloration in the Malaysian tropical rainforest understorey herb Mapania caudata. Annals of Botany, 112, 1141–1148.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sumper, M., & Brunner, E. (2006). Learning from diatoms: Nature’s tools for the production of nanostructured silica. Advanced Functional Materials, 16, 17–26.

    Article  CAS  Google Scholar 

  • Sun, J., Bhushan, B., & Tong, J. (2013). Structural coloration in nature. RSC Advances, 3, 14862–14889.

    Article  CAS  Google Scholar 

  • Thomas, K. R., Kolle, M., Whitney, H. M., Glover, B. J., & Steiner, U. (2010). Function of blue iridescence in tropical understorey plants. Journal of the Royal Society Interface, 7, 1699–1707.

    Google Scholar 

  • Toninelli, C. (2007). Light transport in photonic structures: Interplay between order and disorder (PhD thesis). Florence: Lens.

    Google Scholar 

  • Trzeciak, T. M., & andVukusic, P. (2009). Photonic crystal fiber in the polychaete worm Pherusa sp. Physical Review E, 80, 061908.

    Article  CAS  Google Scholar 

  • van der Kooi, C. J., Wilts, B. D., Leertouwer, H. L., Staal, M., Elzenga, J. T. M., & Stavenga, D. G. (2014). Iridescent flowers? Contribution of surface structures to optical signaling. The New Phytologist, 203, 667–673.

    Article  PubMed  Google Scholar 

  • van der Kooi, C. J., Dyer, A. G., & Stavenga, D. G. (2015). Is floral iridescence a biologically relevant cue in plant-pollinator signaling? The New Phytologist, 205, 18–20.

    Article  PubMed  Google Scholar 

  • Vignolini, S., Rudall, P. J., Rowland, A. V., Reed, A., Moyroud, E., Faden, R. B., Baumberg, J. J., Glover, B. J., & Steiner, U. (2012). Pointillist structural color in Pollia fruit. Proceedings of the National Academy of Sciences of the United States of America, 109, 15712–15715.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vignolini, S., Moyroud, E., Glover, B. J., & Steiner, U. (2013). Analysing photonic structures in plants. Journal of The Royal Society Interface, 10, 20130394.

    Article  PubMed Central  Google Scholar 

  • Vignolini, S., Moyroud, E., Hingant, T., Banks, H., Rudall, P. J., Steiner, U., & Glover, B. (2015a). Is floral iridescence a biologically relevant cue in plant-pollinator signalling? A response to van der Kooi et al. (2014b). The New Phytologist, 205, 21–22.

    Article  PubMed  Google Scholar 

  • Vignolini, S., Moyroud, E., Hingant, T., Banks, H., Rudall, P. J., Steiner, U., & Glover, B. J. (2015b). The flower of Hibiscus trionum is both visibly and measurably iridescent. The New Phytologist, 205, 97–101.

    Article  PubMed  Google Scholar 

  • Vignolini, S., Gregory, T., Kolle, M., Lethbridge, A., Moyroud, E., Steiner, U., Glover, B. J., Vukusic, P., & Rudall, P. J. (2016). Structural colour from helicoidal cell-wall architecture in fruits of Margaritaria nobilis. Journal of The Royal Society Interface, 13, 20160645.

    Article  PubMed Central  Google Scholar 

  • Vukusic, P., & Sambles, J. R. (2003). Photonic structures in biology. Nature, 424, 852–855.

    Article  CAS  PubMed  Google Scholar 

  • Vukusic, P., & Stavenga, D. G. (2009). Physical methods for investigating structural colours in biological systems. Journal of The Royal Society Interface, 6, 133–148.

    Google Scholar 

  • Vukusic, P., Sambles, J. R., Lawrence, C. R., & Wootton, R. J. (1999). Quantified interference and diffraction in single Morpho butterfly scales. Proceedings of the Royal Society B, 266, 1403–1411.

    Article  PubMed Central  Google Scholar 

  • Vukusic, P., Sambles, J. R., & Lawrence, C. R. (2000). Structural colour: Colour mixing in wing scales of a butterfly. Nature, 404, 457.

    Article  CAS  PubMed  Google Scholar 

  • Vukusic, P., Hallam, B., & Noyes, J. (2007). Brilliant whiteness in ultrathin beetle scales. Science, 315, 348.

    Article  CAS  PubMed  Google Scholar 

  • Whitney, H. M., Kolle, M., Andrew, P., Chittka, L., Steiner, U., & Glover, B. J. (2009). Floral iridescence, produced by diffractive optics, acts as a cue for animal pollinators. Science, 323, 130–133.

    Article  CAS  PubMed  Google Scholar 

  • Wickham, S., Large, M. C. J., Poladian, L., & Jermiin, L. S. (2006). Exaggeration and suppression of iridescence: The evolution of two-dimensional butterfly structural colours. Journal of The Royal Society Interface, 3, 99–109.

    Google Scholar 

  • Wiersma, D. S. (2013). Disordered photonics. Nature Photonics, 7, 188–196.

    Article  CAS  Google Scholar 

  • Wikimedia Commons, Kuribo (2008). Satyr Tragopan, captive, Osaka. Satyr Tragopan Osaka.jpg, licensed under CC BY-SA 3.0.

    Google Scholar 

  • Wikimedia Commons, & William H. Majoros (2010). Eastern Bluebird. 7Z1E5531.jpg, licensed under CC BY-SA 3.0.

    Google Scholar 

  • Wilts, B. D., Michielsen, K., De Raedt, H., & Stavenga, D. G. (2012a). Iridescence and spectral filtering of the gyroid-type photonic crystals in Parides sesostris wing scales. Interface Focus, 2, 681–687.

    Article  PubMed  Google Scholar 

  • Wilts, B. D., Michielsen, K., Kuipers, J., De Raedt, H., & Stavenga, D. G. (2012b). Brilliant camouflage: Photonic crystals in the diamond weevil, Entimus imperialis. Proceedings of the Royal Society B, 279, 2524–2530.

    Google Scholar 

  • Wilts, B. D., Michielsen, K., De Raedt, H., & Stavenga, D. G. (2014a). Sparkling feather reflections of a bird-of-paradise explained by finite-difference time-domain modeling. Proceedings of the National Academy of Sciences of the United States of America, 111, 4363–4368.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilts, B. D., Whitney, H. M., Glover, B. J., Steiner, U., & Vignolini, S. (2014b). Natural helicoidal structures: Morphology, self-assembly and optical properties. Materials Today, 1, 177–185.

    Article  Google Scholar 

  • Wilts, B. D., Sheng, X., Holler, M., Diaz, A., Guizar-Sicairos, M., Raabe, J., Hoppe, R., Liu, S. H., Langford, R., Onelli, O. D., et al. (2017a). Evolutionary-optimized photonic network structure in white beetle wing scales. Advanced Materials, 1702057.

    Google Scholar 

  • Wilts, B. D., Zubiri, B. A., Klatt, M. A., Butz, B., Fischer, M. G., Kelly, S. T., Spiecker, E., Steiner, E., & Schröder-Turk, G. E. (2017b). Butterfly gyroid nanostructures as a time-frozen glimpse of intracellular membrane development. Science Advances, 3, e1603119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wolf, E. (2007). Introduction to the theory of coherence and polarization of light. Cambridge: Cambridge University Press.

    Google Scholar 

  • Yablonovitch, E. (1993). Photonic band-gap structures. Journal of the Optical Society of America B: Optical Physics, 10, 283–295.

    Article  CAS  Google Scholar 

  • Yong, J., Chen, F., Yang, Q., Du, G., Shan, C., Bian, H., Farooq, U., & Hou, X. (2015). Bioinspired transparent underwater superoleophobic and anti-oil surfaces. Journal of Materials Chemistry, A3, 9379–9384.

    Article  CAS  Google Scholar 

  • Yoshioka, S., & Kinoshita, S. (2007). Polarization-sensitive color mixing in the wing of the Madagascan sunset moth. Optics Express, 15, 2691–2701.

    Article  PubMed  Google Scholar 

  • Yoshioka, S., & Kinoshita, S. (2009). Optical effects of highly curved multilayer structure found in the scale of structurally colored moth. Proceedings of SPIE, 7401, 740105. https://doi.org/10.1117/12.824861.

    Article  CAS  Google Scholar 

  • Yun, W.-B., Kirz, J., & Sayre, D. (1987). Observation of the soft X-ray diffraction pattern of a single diatom. Acta Crystallographica. Section A, 43, 131–133.

    Google Scholar 

  • Zi, J., Yu, X., Li, Y., Hu, X., Xu, C., Wang, X., Liu, X., & Fu, R. (2003). Coloration strategies in peacock feathers. Proceedings of the National Academy of Sciences of the United States of America, 100, 12576–12578.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by a BBSRC David Phillips fellowship [BB/K014617/1], the European Research Council [ERC-2014-STG H2020 639088] and the European Commission [Marie Curie Fellowship LODIS, 701455]. The authors thank Rox Middleton for proofreading the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvia Vignolini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Johansen, V.E., Onelli, O.D., Steiner, L.M., Vignolini, S. (2017). Photonics in Nature: From Order to Disorder. In: Gorb, S., Gorb, E. (eds) Functional Surfaces in Biology III. Biologically-Inspired Systems, vol 10. Springer, Cham. https://doi.org/10.1007/978-3-319-74144-4_3

Download citation

Publish with us

Policies and ethics