Skip to main content
  • 696 Accesses

Abstract

This introductory chapter intends to present the required notions, definitions, and background in order to aid understanding the problem of fault diagnosis of hybrid dynamic and complex systems. It starts by defining the hybrid dynamic systems and presenting its main classes and modeling tools. Then, it presents the problem of diagnosis of faults in hybrid dynamic systems, its challenges, and a general classification of its main approaches. Finally, this chapter ends by a compact summary of the contents of the book by providing a paragraph about each of the single contribution (method used, faults diagnosed, class of hybrid dynamic systems adopted, modeling tool used, and applications targeted).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Van Der Schaft, A. J., & Schumacher, J. M. (2000). An introduction to hybrid dynamical systems (Vol. 251). London: Springer.

    Book  MATH  Google Scholar 

  2. Branicky, M. S., Borkar, V. S., & Mitter, S. K. (1998). A unified framework for hybrid control: Model and optimal control theory. IEEE Transactions on Automatic Control, 43(1), 31–45.

    Article  MathSciNet  MATH  Google Scholar 

  3. Rodrigues, L., & Boyd, S. (2005). Piecewise-affine state feedback for piecewise-affine slab systems using convex optimization. Systems & Control Letters, 54(9), 835–853.

    Article  MathSciNet  MATH  Google Scholar 

  4. Louajri, H., & Sayed-Mouchaweh, M. (2014). Decentralized diagnosis and diagnosability of a class of hybrid dynamic systems. In 11th International conference on informatics in control, automation and robotics (ICINCO) (Vol. 2).

    Google Scholar 

  5. Shahbazi, M., Jamshidpour, E., Poure, P., Saadate, S., & Zolghadri, M. R. (2013). Open-and short-circuit switch fault diagnosis for nonisolated dc–dc converters using field programmable gate array. IEEE Transactions on Industrial Electronics, 60(9), 4136–4146.

    Article  Google Scholar 

  6. David, R., & Alla, H. (2010). Discrete, continuous, and hybrid Petri nets. Berlin Heidelberg: Springer.

    Book  MATH  Google Scholar 

  7. Wang, D., Arogeti, S., Zhang, J. B., & Low, C. B. (2008). Monitoring ability analysis and qualitative fault diagnosis using hybrid bond graph. IFAC Proceedings Volumes, 41(2), 10516–10521.

    Article  Google Scholar 

  8. Henzinger, T. A. (2000). The theory of hybrid automata. In Verification of digital and hybrid systems (pp. 265–292). Berlin Heidelberg: Springer.

    Chapter  Google Scholar 

  9. Sayed-Mouchaweh, M., & Lughofer, E. (2015). Decentralized fault diagnosis approach without a global model for fault diagnosis of discrete event systems. International Journal of Control, 88(11), 2228–2241.

    Article  MathSciNet  MATH  Google Scholar 

  10. Sayed-Mouchaweh, M. (2014). Discrete event systems: Diagnosis and diagnosability. New York: Springer.

    Book  Google Scholar 

  11. Tabatabaeipour, M., Odgaard, P. F., Bak, T., & Stoustrup, J. (2012). Fault detection of wind turbines with uncertain parameters: A set-membership approach. Energies, 5(7), 2424–2448.

    Article  Google Scholar 

  12. Hartert, L., & Sayed-Mouchaweh, M. (2014). Dynamic supervised classification method for online monitoring in non-stationary environments. Neurocomputing, 126, 118–131.

    Article  Google Scholar 

  13. Sayed-Mouchaweh, M., & Messai, N. (2012). A clustering-based approach for the identification of a class of temporally switched linear systems. Pattern Recognition Letters, 33(2), 144–151.

    Article  Google Scholar 

  14. Toubakh, H., & Sayed-Mouchaweh, M. (2015). Hybrid dynamic data-driven approach for drift-like fault detection in wind turbines. Evolving Systems, 6(2), 115–129.

    Article  Google Scholar 

  15. Sayed-Mouchaweh, M. (2004). Diagnosis in real time for evolutionary processes in using pattern recognition and possibility theory. International Journal of Computational Cognition, 2(1), 79–112.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moamar Sayed-Mouchaweh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sayed-Mouchaweh, M. (2018). Prologue. In: Sayed-Mouchaweh, M. (eds) Fault Diagnosis of Hybrid Dynamic and Complex Systems. Springer, Cham. https://doi.org/10.1007/978-3-319-74014-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-74014-0_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-74013-3

  • Online ISBN: 978-3-319-74014-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics