Skip to main content

Part of the book series: SpringerBriefs in Applied Sciences and Technology ((BRIEFSTHERMAL))

  • 645 Accesses

Abstract

There are important methodological considerations underlying the study of thermal transport in nonmetallic solids. Unlike other simulation methods such as applying the Boltzmann transport equation, molecular dynamics can capture nonlinear interactions between particles described by classical interatomic potentials and hence more closely recapitulates the true physical properties of materials. In this chapter, we introduce some popular methods and numerical techniques for classical molecular dynamics, along with a brief discussion of theoretical and physical properties that can be derived from molecular dynamics simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schapotschnikow P, van Huis MA, Zandbergen HW, Vanmaekelbergh D, Vlugt TJ (2010) Morphological transformations and fusion of PbSe nanocrystals studied using atomistic simulations. Nano Lett 10:3966–3971

    Article  Google Scholar 

  2. Stillinger FH, Weber TA (1985) Computer simulation of local order in condensed phases of silicon. Phys Rev B 31:5262

    Article  Google Scholar 

  3. Dumitrică T, James RD (2007) Objective molecular dynamics. J Mech Phys Solids 55:2206–2236

    Article  MathSciNet  MATH  Google Scholar 

  4. Verlet L (1967) Computer “experiments” on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules. Phys Rev 159:98

    Article  Google Scholar 

  5. Schneider T, Stoll E (1978) Molecular-dynamics study of a three-dimensional one-component model for distortive phase transitions. Phys Rev B 17:1302

    Article  Google Scholar 

  6. Nosé S (1984) A molecular dynamics method for simulations in the canonical ensemble. Mol Phys 52:255–268

    Article  Google Scholar 

  7. Hoover WG (1985) Canonical dynamics: equilibrium phase-space distributions. Phys Rev A 31:1695

    Article  Google Scholar 

  8. Plimpton S (1995) Fast parallel algorithms for short-range molecular dynamics. J Comput Phys 117:1–19

    Article  MATH  Google Scholar 

  9. Green MS (1954) Markoff random processes and the statistical mechanics of time-dependent phenomena. II. Irreversible processes in fluids. J Chem Phys 22:398–413

    Article  MathSciNet  Google Scholar 

  10. Kubo R (1957) Statistical-mechanical theory of irreversible processes. I. General theory and simple applications to magnetic and conduction problems. J Phys Soc Jpn 12:570–586

    Article  MathSciNet  Google Scholar 

  11. Tretiakov KV, Scandolo S (2004) Thermal conductivity of solid argon from molecular dynamics simulations. J Chem Phys 120:3765–3769

    Article  Google Scholar 

  12. Volz SG, Chen G (2000) Molecular-dynamics simulation of thermal conductivity of silicon crystals. Phys Rev B 61:2651

    Article  Google Scholar 

  13. James RD (2006) Objective structures. J Mech Phys Solids 54:2354–2390

    Article  MathSciNet  MATH  Google Scholar 

  14. Stevens RJ, Zhigilei LV, Norris PM (2007) Effects of temperature and disorder on thermal boundary conductance at solid–solid interfaces: nonequilibrium molecular dynamics simulations. Int J Heat Mass Transf 50:3977–3989

    Article  MATH  Google Scholar 

  15. Thomas JA, Turney JE, Iutzi RM, Amon CH, McGaughey AJ (2010) Predicting phonon dispersion relations and lifetimes from the spectral energy density. Phys Rev B 81:081411

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 The Author(s)

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Al-Ghalith, J., Dumitrica, T. (2018). Methodology. In: Nano-scale Heat Transfer in Nanostructures. SpringerBriefs in Applied Sciences and Technology(). Springer, Cham. https://doi.org/10.1007/978-3-319-73882-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-73882-6_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-73881-9

  • Online ISBN: 978-3-319-73882-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics