Skip to main content

The Endocrine Response to Critical Illness

  • Chapter
  • First Online:
Pediatric Endocrinology

Abstract

The endocrine response to critical illness is composed of acute and chronic responses. The acute response is considered adaptive as a means of responding to physiologic stress. In this phase, stress stimulates the hypothalamic-pituitary-adrenal (HPA) axis, peripherally inactivates the hypothalamic-pituitary-thyroid (HPT) and hypothalamic-pituitary-gonadal (HPG) axes, increases secretion of growth hormone, and induces insulin resistance and protein catabolism. The concept, diagnosis, and treatment of critical illness-related corticosteroid insufficiency remain controversial. The chronic response to critical illness is marked by central suppression of the HPT, HPG, and GH axes. This phase is particularly notable for continued protein catabolism and insulin resistance associated with significant morbidity and mortality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This test is known as thyroid-binding globulin index (TBGI), thyroid hormone-binding resin (THBR), T3 resin uptake (T3RU), and free thyroxine index (FTI). The units and normal ranges of each version of the test are unique.

References

  1. Van den Berghe G, de Zegher F, Bouillon R. Acute and prolonged critical illness as different neuroendocrine paradigms. J Clin Endocrinol Metab. 1998;83(6):827–34.

    Google Scholar 

  2. Vanhorebeek I, Langouche L, Van den Berghe G. Endocrine aspects of acute and prolonged critical illness. Nat Clin Pract Endocrinol Metab. 2006;2(1):20–31.

    Article  CAS  PubMed  Google Scholar 

  3. Brown-Sequard CE. Recherches experimentales sur la physiologie et la pathologie des capsules surrenales, C. R. Acad Sci [D]: Paris. 1956, pp. 422–25.

    Google Scholar 

  4. Vermes I, Beishuizen A, Hampsink RM, Haanen C. Dissociation of plasma adrenocorticotropin and cortisol levels in critically ill patients: possible role of endothelin and atrial natriuretic hormone. J Clin Endocrinol Metab. 1995;80(4):1238–42.

    CAS  PubMed  Google Scholar 

  5. Boonen E, Vervenne H, Meersseman P, Andrew R, Mortier L, Declercq PE, Vanwijngaerden Y-M, Spriet I, Wouters PJ, Vander Perre S, et al. Reduced cortisol metabolism during critical illness. N Engl J Med. 2013;368(16):1477–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Boonen E, Van den Berghe G. Endocrine responses to critical illness: novel insights and therapeutic implications. J Clin Endocrinol Metab. 2014;99(5):1569–82.

    Article  CAS  PubMed  Google Scholar 

  7. Boonen E, Van den Berghe G. New concepts to further unravel adrenal insufficiency during critical illness. Eur J Endocrinol. 2016;175(1):R1–9.

    Article  PubMed  Google Scholar 

  8. Munck A, Guyre PM, Holbrook NJ. Physiological functions of glucocorticoids in stress and their relation to pharmacological actions. Endocr Rev. 1984;5(1):25–44.

    Article  CAS  PubMed  Google Scholar 

  9. Wurtman RJ, Axelrod J. Adrenaline synthesis: control by the pituitary gland and adrenal glucocorticoids. Science. 1965;150(702):1464–5.

    Article  CAS  PubMed  Google Scholar 

  10. Wong DL, et al. Glucocorticoid regulation of phenylethanolamine N-methyltransferase in vivo. FASEB J. 1992;6(14):3310–5.

    Article  CAS  PubMed  Google Scholar 

  11. Tai TC, et al. Stress-induced changes in epinephrine expression in the adrenal medulla in vivo. J Neurochem. 2007;101:1108–18.

    Article  CAS  PubMed  Google Scholar 

  12. Annane D, et al. A 3-level prognostic classification in septic shock based on cortisol levels and cortisol response to corticotropin. JAMA. 2000;283(8):1038–45.

    Article  CAS  PubMed  Google Scholar 

  13. Marik PE. Critical illness-related corticosteroid insufficiency. Chest. 2009;135(1):181–93.

    Article  PubMed  Google Scholar 

  14. Annane D, et al. Diagnosis of adrenal insufficiency in severe sepsis and septic shock. Am J Respir Crit Care Med. 2006;174(12):1319–26.

    Article  PubMed  Google Scholar 

  15. Levy-Shraga Y, et al. Elevated baseline cortisol levels are predictive of bad outcomes in critically ill children. Pediatr Emerg Care. 2016:1. https://doi.org/10.1097/PEC.0000000000000784.

  16. Levy-Shraga Y, et al. Critical illness-related corticosteroid insufficiency in children. Horm Res Paediatr. 2013;80(5):309–17.

    Article  CAS  PubMed  Google Scholar 

  17. Annane D, et al. Effect of treatment with low doses of hydrocortisone and fludrocortisone on mortality in patients with septic shock. JAMA. 2002;288(7):862–71.

    Article  CAS  PubMed  Google Scholar 

  18. Sprung CL, et al. Hydrocortisone therapy for patients with septic shock. N Engl J Med. 2008;358(2):111–24.

    Article  CAS  PubMed  Google Scholar 

  19. Keh D, et al. Effect of hydrocortisone on development of shock among patients with severe sepsis: the HYPRESS randomized clinical trial. JAMA. 2016;316(17):1775–85.

    Article  CAS  PubMed  Google Scholar 

  20. Roquilly A, et al. Hydrocortisone therapy for patients with multiple trauma: the randomized controlled HYPOLYTE study. JAMA. 2011;305(12):1201–9.

    Article  CAS  PubMed  Google Scholar 

  21. Johnson PJ. Hydrocortisone for treatment of hypotension in the newborn. Neonatal Netw. 2015;34(1):46–51.

    Article  PubMed  Google Scholar 

  22. Ibrahim H, et al. Corticosteroids for treating hypotension in preterm infants. Cochrane Database Syst Rev. 2011(12) online.

    Google Scholar 

  23. den Brinker M, et al. One single dose of etomidate negatively influences adrenocortical performance for at least 24h in children with meningococcal sepsis. Intensive Care Med. 2008;34(1):163–8.

    Article  CAS  Google Scholar 

  24. Basciani RM, et al. Anaesthetic induction with etomidate in cardiac surgery: a randomised controlled trial. Eur J Anaesthesiol. 2016;33(6):417–24.

    Article  CAS  PubMed  Google Scholar 

  25. Du Y, et al. The effects of sing-dose etomidate versus propofol on cortisol levels in pediatric patients undergoing urologic surgery: a randomized controlled trial. Anesth Analg. 2015;121(6):1580–5.

    Article  CAS  PubMed  Google Scholar 

  26. Bruder EA, et al. Single induction dose of etomidate versus other induction agents for endotracheal intubation in critical ill patients. Cochrane Database Syst Rev. 2015;8(1).

    Google Scholar 

  27. Peeters B, et al. Drug-induced HPA axis alterations during acute critical illness: a multivariable association study. Clin Endocrinol. 2017;86(1):26–36.

    Article  CAS  Google Scholar 

  28. Gu H, et al. Combined use of etomidate and dexmedetomidine produces an additive effect in inhibiting the secretion of human adrenocortical hormones. Med Sci Monit. 2015;16(21):3528–35.

    Article  Google Scholar 

  29. Rothwell PM, Lawler PG. Prediction of outcome in intensive care patients using endocrine parameters. Crit Care Med. 1995;23(1):78–83.

    Article  CAS  PubMed  Google Scholar 

  30. Chopra IJ, et al. Evidence for an inhibitor of extrathyroidal conversion of thyroxine to 3,5,3′-triiodothyronine in sera of patients with nonthyroidal illnesses. J Clin Endocrinol Metab. 1985;60(4):666–72.

    Article  CAS  PubMed  Google Scholar 

  31. Kaptein EM, et al. Thyroxine metabolism in the low thyroxine state of critical nonthyroidal illnesses. J Clin Endocrinol Metab. 1981;53(4):764–71.

    Article  CAS  PubMed  Google Scholar 

  32. Vos RA, et al. Impaired thyroxine and 3,5,3′-triiodothyronine handling by rat hepatocytes in the presence of serum of patients with nonthyroidal illness. J Clin Endocrinol Metab. 1995;80(8):2364–70.

    CAS  PubMed  Google Scholar 

  33. Adler SM, Wartofsky L. The nonthyroidal illness syndrome. Endocrinol Metab Clin N Am. 2007;36:657–72.

    Article  CAS  Google Scholar 

  34. Peeters RP, et al. Reduced activation and increased inactivation of thyroid hormone in tissues of critically ill patients. J Clin Endocrinol Metab. 2003;88(7):3202–11.

    Article  CAS  PubMed  Google Scholar 

  35. Casaer MP, et al. Early versus late parenteral nutrition in critically ill adults. N Engl J Med. 2011;365(6):506–17.

    Article  CAS  PubMed  Google Scholar 

  36. Fivez T, et al. Early versus late parenteral nutrition in critically ill children. N Engl J Med. 2016;374(12):1111–22.

    Article  CAS  PubMed  Google Scholar 

  37. Langouche L, et al. Impact of early nutrient restriction during critical illness on the nonthyroidal illness syndrome and its relation with outcome a randomized, controlled clinical study. J Clin Endocrinol Metab. 2013;98(3):1006–13.

    Article  CAS  PubMed  Google Scholar 

  38. Bacci V, Schussler GC, Kaplan TB. The relationship between serum triiodothyronine and thyrotropin during systemic illness. J Clin Endocrinol Metab. 1982;54(6):1229–35.

    Article  CAS  PubMed  Google Scholar 

  39. Van den Berghe G, et al. Thyrotropin and prolactin release in prolonged critical illness: dynamics of spontaneous secretion and effects of growth hormone-secretagogues. Clin Endocrinol. 1997;47(5):599–612.

    Article  Google Scholar 

  40. Van den Berghe G, et al. Neuroendocrinology of prolonged critical illness: effects of exogenous thyrotropin-releasing hormone and its combination with growth hormone secretagogues. J Clin Endocrinol Metab. 1998;83(2):309–19.

    PubMed  Google Scholar 

  41. Murkin JM. Anesthesia and hypothyroidism: a review of thyroxine physiology, pharmacology, and anesthetic implications. Anesth Analg. 1982;61(4):371–83.

    Article  CAS  PubMed  Google Scholar 

  42. Zwillich CW, Pierson DJ, Hofeldt FD, et al. Ventilatory control in myxedema and hypothyroidism. N Engl J Med. 1975;292:662.

    Article  CAS  PubMed  Google Scholar 

  43. Siafakas NM, Salesiotou V, Filaditaki V, et al. Respiratory muscle strength in hypothyroidism. Chest. 1992;102:189.

    Article  CAS  PubMed  Google Scholar 

  44. Wilson WR, Bedell GN. The pulmonary abnormalities in myxedema. J Clin Invest. 1960;39:42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Stathatos N, Wartofsky L. Perioperative management of patients with hypothyroidism. Endocrinol Metab Clin N Am. 2003;32:503.

    Article  Google Scholar 

  46. Chopra IJ. Simultaneous measurement of free thyroxine and free 3,5,3′-triiodothyronine in undiluted serum by direct equilibrium dialysis/radioimmunoassay: evidence that free triiodothyronine and free thyroxine are normal in many patients with the low triiodothyronine syndrome. Thyroid. 1998;8(3):249–57.

    Article  CAS  PubMed  Google Scholar 

  47. Burmeister LA. Reverse T3 does not reliably differentiate hypothyroid sick syndrome from euthyroid sick syndrome. Thyroid. 1995;5(6):435–41.

    Article  CAS  PubMed  Google Scholar 

  48. Surks MI, Sievert R. Drugs and thyroid function. N Engl J Med. 1995;333(25):1688–94.

    Article  CAS  PubMed  Google Scholar 

  49. Becker RA, et al. Hypermetabolic low triiodothyronine syndrome of burn injury. Crit Care Med. 1982;10(12):870–5.

    Article  CAS  PubMed  Google Scholar 

  50. Brent GA, Hershman JM. Thyroxine therapy in patients with severe nonthyroidal illnesses and low serum thyroxine concentration. J Clin Endocrinol Metab. 1986;63(1):1–8.

    Article  CAS  PubMed  Google Scholar 

  51. Novitzky D. Heart transplantation, euthyroid sick syndrome, and triiodothyronine replacement. J Heart Lung Transplant. 1992;11(4 Pt 2):S196–8.

    CAS  PubMed  Google Scholar 

  52. Bennett-Guerrero E, et al. Cardiovascular effects of intravenous triiodothyronine in patients undergoing coronary artery bypass graft surgery. A randomized, double-blind, placebo- controlled trial. Duke T3 study group. JAMA. 1996;275(9):687–92.

    Article  CAS  PubMed  Google Scholar 

  53. Klemperer JD, et al. Thyroid hormone treatment after coronary-artery bypass surgery. N Engl J Med. 1995;333(23):1522–7.

    Article  CAS  PubMed  Google Scholar 

  54. Bettendorf M, et al. Tri-iodothyronine treatment in children after cardiac surgery: a double-blind, randomised, placebo-controlled study. Lancet. 2000;356(9229):529–34.

    Article  CAS  PubMed  Google Scholar 

  55. Chowdhury D, et al. A prospective randomized clinical study of thyroid hormone treatment after operations for complex congenital heart disease. J Thorac Cardiovasc Surg. 2001;122(5):1023–5.

    Article  CAS  PubMed  Google Scholar 

  56. Mackie AS, et al. A randomized, double-blind, placebo-controlled pilot trial of triiodothyronine in neonatal heart surgery. J Thorac Cardiovasc Surg. 2005;130(3):810–6.

    Article  CAS  PubMed  Google Scholar 

  57. Portman MA, et al. Triiodothyronine supplementation in infants and children undergoing cardiopulmonary bypass (TRICC): a multicenter placebo-controlled randomized trial: age analysis. Circulation. 2010;122(11 Suppl):S224–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Hays MT, Nielsen KR. Human thyroxine absorption: age effects and methodological analyses. Thyroid. 1994;4(1):55–64.

    Article  CAS  PubMed  Google Scholar 

  59. Jonklaas J, et al. Guidelines for the treatment of hypothyroidism. Thyroid. 2014;24(12):1670–751.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Wartofsky L. In: Braverman LE, editor. The thyroid: a fundamental and clinical text, U.R. Philadelphia: Lippincott-Raven; 1995. p. 871–7.

    Google Scholar 

  61. Ross R, et al. Critically ill patients have high basal growth hormone levels with attenuated oscillatory activity associated with low levels of insulin- like growth factor-I. Clin Endocrinol. 1991;35(1):47–54.

    Article  CAS  Google Scholar 

  62. Maiter D, et al. Differential regulation by growth hormone (GH) of insulin-like growth factor I and GH receptor/binding protein gene expression in rat liver. Endocrinology. 1992;130(6):3257–64.

    Article  CAS  PubMed  Google Scholar 

  63. Van den Berghe G, et al. The somatotropic axis in critical illness: effect of continuous growth hormone (GH)-releasing hormone and GH-releasing peptide-2 infusion. J Clin Endocrinol Metab. 1997;82(2):590–9.

    PubMed  Google Scholar 

  64. Giustina A, Wehrenberg WB. Influence of thyroid hormones on the regulation of growth hormone secretion. Eur J Endocrinol. 1995;133(6):646–53.

    Article  CAS  PubMed  Google Scholar 

  65. Valcavi R, Zini M, Portioli I. Thyroid hormones and growth hormone secretion. J Endocrinol Investig. 1992;15(4):313–30.

    Article  CAS  Google Scholar 

  66. Wajchenberg BL, et al. Growth hormone axis in cushing's syndrome. Horm Res. 1996;45(1–2):99–107.

    Article  CAS  PubMed  Google Scholar 

  67. Dieguez C, et al. Role of glucocorticoids in the neuroregulation of growth hormone secretion. J Pediatr Endocrinol Metab. 1996;9(Suppl 3):255–60.

    PubMed  Google Scholar 

  68. Casanueva FF. Physiology of growth hormone secretion and action. Endocrinol Metab Clin N Am. 1992;21(3):483–517.

    CAS  Google Scholar 

  69. Strobl JS, Thomas MJ. Human growth hormone. Pharmacol Rev. 1994;46(1):1–34.

    CAS  PubMed  Google Scholar 

  70. Van den Berghe G, de Zegher F, Lauwers P. Dopamine suppresses pituitary function in infants and children. Crit Care Med. 1994;22(11):1747–53.

    Article  PubMed  Google Scholar 

  71. Van den Berghe G, de Zegher F. Anterior pituitary function during critical illness and dopamine treatment. Crit Care Med. 1996;24(9):1580–90.

    Article  PubMed  Google Scholar 

  72. Takala J, et al. Increased mortality associated with growth hormone treatment in critically ill adults. N Engl J Med. 1999;341(11):785–92.

    Article  CAS  PubMed  Google Scholar 

  73. van Steenbergen W, et al. Suppression of gonadotropin secretion in the hospitalized postmenopausal female as an effect of acute critical illness. Neuroendocrinology. 1994;60(2):165–72.

    Article  PubMed  Google Scholar 

  74. Spratt DI, et al. Reproductive axis suppression in acute illness is related to disease severity. J Clin Endocrinol Metab. 1993;76(6):1548–54.

    CAS  PubMed  Google Scholar 

  75. Woolf PD, et al. Transient hypogonadotropic hypogonadism caused by critical illness. J Clin Endocrinol Metab. 1985;60(3):444–50.

    Article  CAS  PubMed  Google Scholar 

  76. Vogel AV, Peake GT, Rada RT. Pituitary-testicular axis dysfunction in burned men. J Clin Endocrinol Metab. 1985;60(4):658–65.

    Article  CAS  PubMed  Google Scholar 

  77. Van den Berghe G. Five-Day Pulsatile Gonadotropin-Releasing Hormone Administration Unveils Combined Hypothalamic-Pituitary-Gonadal Defects Underlying Profound Hypoandrogenism in Men with Prolonged Critical Illness. J Clin Endocrinol Metab. 2001;86(7):3217–26.

    PubMed  Google Scholar 

  78. Heckmann M, et al. Major cardiac surgery induces an increase in sex steroids in prepubertal children. Steroids. 2014;81:57–63.

    Article  CAS  PubMed  Google Scholar 

  79. Jaksic T, et al. Proline metabolism in adult male burned patients and healthy control subjects. Am J Clin Nutr. 1991;54(2):408–13.

    Article  CAS  PubMed  Google Scholar 

  80. Cuthbertson DP. Further observations on the disturbance of metabolism caused by injury, with particular reference to the dietary requirements of fracture cases. Br J Surg. 1936;23:505–20.

    Article  Google Scholar 

  81. Moyer E, et al. Multiple systems organ failure: VI. Death predictors in the trauma- septic state – the most critical determinants. J Trauma. 1981;21(10):862–9.

    Article  CAS  PubMed  Google Scholar 

  82. Shew SB, et al. The determinants of protein catabolism in neonates on extracorporeal membrane oxygenation. J Pediatr Surg. 1999;34(7):1086–90.

    Article  CAS  PubMed  Google Scholar 

  83. Przkora R, et al. Body composition changes with time in pediatric burn patients. J Trauma. 2006;60(5):968–71; discussion 971.

    Article  PubMed  Google Scholar 

  84. Cuthbertson DP, Shaw GB, Young FG. The anterior pituitary gland and protein metabolism: the nitrogen retaining action of anterior lobe extracts. J Clin Endocrinol Metab. 1941;2:459–67.

    CAS  Google Scholar 

  85. Voerman BJ, et al. Effects of human growth hormone in critically ill nonseptic patients: results from a prospective, randomized, placebo-controlled trial. Crit Care Med. 1995;23(4):665–73.

    Article  CAS  PubMed  Google Scholar 

  86. Petersen SR, Holaday NJ, Jeevanandam M. Enhancement of protein synthesis efficiency in parenterally fed trauma victims by adjuvant recombinant human growth hormone. J Trauma. 1994;36(5):726–33.

    Article  CAS  PubMed  Google Scholar 

  87. Dahn MS, Lange MP. Systemic and splanchnic metabolic response to exogenous human growth hormone. Surgery. 1998;123(5):528–38.

    Article  CAS  PubMed  Google Scholar 

  88. Gamrin L, et al. Protein-sparing effect in skeletal muscle of growth hormone treatment in critically ill patients. Ann Surg. 2000;231(4):577–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Hart DW, et al. Attenuation of posttraumatic muscle catabolism and osteopenia by long-term growth hormone therapy. Ann Surg. 2001;233(6):827–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Genetech Nutropin AQ package Insert. 1999.

    Google Scholar 

  91. Turkalj I, et al. Effect of increasing doses of recombinant human insulin-like growth factor-I on glucose, lipid, and leucine metabolism in man. J Clin Endocrinol Metab. 1992;75(5):1186–91.

    CAS  PubMed  Google Scholar 

  92. Berneis K, et al. Effects of insulin-like growth factor I combined with growth hormone on glucocorticoid-induced whole-body protein catabolism in man. J Clin Endocrinol Metab. 1997;82(8):2528–34.

    CAS  PubMed  Google Scholar 

  93. Cioffi WG, et al. Insulin-like growth factor-1 lowers protein oxidation in patients with thermal injury. Ann Surg. 1994;220(3):310–6; discussion 316–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Leinskold T, et al. Effect of postoperative insulin-like growth factor I supplementation on protein metabolism in humans. Br J Surg. 1995;82(7):921–5.

    Article  CAS  PubMed  Google Scholar 

  95. Sandstrom R, et al. The effect of recombinant human IGF-I on protein metabolism in post-operative patients without nutrition compared to effects in experimental animals. Eur J Clin Investig. 1995;25(10):784–92.

    Article  CAS  Google Scholar 

  96. Goeters C, et al. Repeated administration of recombinant human insulin-like growth factor-I in patients after gastric surgery. Effect on metabolic and hormonal patterns. Ann Surg. 1995;222(5):646–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Herndon DN, et al. Muscle protein catabolism after severe burn: effects of IGF-1/IGFBP-3 treatment. Ann Surg. 1999;229(5):713–20; discussion 720–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Yarwood GD, et al. Administration of human recombinant insulin-like growth factor-I in critically ill patients. Crit Care Med. 1997;25(8):1352–61.

    Article  CAS  PubMed  Google Scholar 

  99. Hausmann DF, et al. Anabolic steroids in polytrauma patients. Influence on renal nitrogen and amino acid losses: a double-blind study. JPEN J Parenter Enteral Nutr. 1990;14(2):111–4.

    Article  CAS  PubMed  Google Scholar 

  100. Gervasio JM, et al. Oxandrolone in trauma patients. Pharmacotherapy. 2000;20(11):1328–34.

    Article  CAS  PubMed  Google Scholar 

  101. Demling RH, Orgill DP. The anticatabolic and wound healing effects of the testosterone analog oxandrolone after severe burn injury. J Crit Care. 2000;15(1):12–7.

    Article  CAS  PubMed  Google Scholar 

  102. Wolf SE, et al. Effects of oxandrolone on outcome measures in the severely burned: a multicenter prospective randomized double-blind trial. J Burn Care Res. 2006;27(2):131–9; discussion 140–1.

    Article  PubMed  Google Scholar 

  103. Jeschke MG, et al. The effect of oxandrolone on the endocrinologic, inflammatory, and hypermetabolic responses during the acute phase postburn. Ann Surg. 2007;246(3):351–60; discussion 360–2.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Porro L, et al. Five-year outcomes after oxandrolone administration in severely burned children: a randomized clinical trial of safety and efficacy. J Am Coll Surg. 2012;214(4):489–502.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Denne SC, et al. Proteolysis in skeletal muscle and whole body in response to euglycemic hyperinsulinemia in normal adults. Am J Phys. 1991;261(6 Pt 1):E809–14.

    CAS  Google Scholar 

  106. Fukagawa NK, et al. Insulin-mediated reduction of whole body protein breakdown. Dose-response effects on leucine metabolism in postabsorptive men. J Clin Invest. 1985;76(6):2306–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Heslin MJ, et al. Effect of hyperinsulinemia on whole body and skeletal muscle leucine carbon kinetics in humans [published erratum appears in Am J Physiol 1993 Jul;265(1 Pt 1):section E following table of contents]. Am J Phys. 1992;262(6 Pt 1):E911–8.

    CAS  Google Scholar 

  108. Tessari P, et al. Dose-response curves of effects of insulin on leucine kinetics in humans. Am J Phys. 1986;251(3 Pt 1):E334–42.

    CAS  Google Scholar 

  109. Ferrando AA, et al. A submaximal dose of insulin promotes net skeletal muscle protein synthesis in patients with severe burns [see comments]. Ann Surg. 1999;229(1):11–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Pierre EJ, et al. Effects of insulin on wound healing. J Trauma. 1998;44(2):342–5.

    Article  CAS  PubMed  Google Scholar 

  111. Sakurai Y, et al. Stimulation of muscle protein synthesis by long-term insulin infusion in severely burned patients. Ann Surg. 1995;222(3):283–94; 294–7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Poindexter BB, Karn CA, Denne SC. Exogenous insulin reduces proteolysis and protein synthesis in extremely low birth weight infants. J Pediatr. 1998;132(6):948–53.

    Article  CAS  PubMed  Google Scholar 

  113. Agus M, et al. The effect of insulin infusion upon protein metabolism in neonates on extracorporeal life support. Ann Surg. 2006;244(4):536–44.

    PubMed  PubMed Central  Google Scholar 

  114. Moghissi ES, et al. American Association of Clinical Endocrinologists and American Diabetes Association consensus statement on inpatient glycemic control. Diabetes Care. 2009;32(6):1119–31.

    Article  PubMed  PubMed Central  Google Scholar 

  115. Branco RG, et al. Glucose level and risk of mortality in pediatric septic shock. Pediatr Crit Care Med. 2005;6(4):470–2.

    Article  PubMed  Google Scholar 

  116. Faustino EV, Apkon M. Persistent hyperglycemia in critically ill children. J Pediatr. 2005;146(1):30–4.

    Article  PubMed  Google Scholar 

  117. Wintergerst KA, et al. Association of hypoglycemia, hyperglycemia, and glucose variability with morbidity and death in the pediatric intensive care unit. Pediatrics. 2006;118(1):173–9.

    Article  PubMed  Google Scholar 

  118. van den Berghe G, et al. Intensive insulin therapy in the critically ill patients. N Engl J Med. 2001;345(19):1359–67.

    Article  PubMed  Google Scholar 

  119. Malmberg K, et al. Randomized trial of insulin-glucose infusion followed by subcutaneous insulin treatment in diabetic patients with acute myocardial infarction (DIGAMI study): effects on mortality at 1 year [see comments]. J Am Coll Cardiol. 1995;26(1):57–65.

    Article  CAS  PubMed  Google Scholar 

  120. Annane D, et al. Corticosteroid treatment and intensive insulin therapy for septic shock in adults: a randomized controlled trial. JAMA. 2010;303(4):341–8.

    Article  PubMed  Google Scholar 

  121. Arabi YM, et al. Intensive versus conventional insulin therapy: a randomized controlled trial in medical and surgical critically ill patients. Crit Care Med. 2008;36(12):3190–7.

    Article  CAS  PubMed  Google Scholar 

  122. Brunkhorst FM, et al. Intensive insulin therapy and pentastarch resuscitation in severe sepsis. N Engl J Med. 2008;358(2):125–39.

    Article  CAS  PubMed  Google Scholar 

  123. Preiser JC, et al. A prospective randomised multi-centre controlled trial on tight glucose control by intensive insulin therapy in adult intensive care units: the Glucontrol study. Intensive Care Med. 2009;35(10):1738–48.

    Article  CAS  PubMed  Google Scholar 

  124. Van den Berghe G, et al. Intensive insulin therapy in the medical ICU. N Engl J Med. 2006;354(5):449–61.

    Article  PubMed  Google Scholar 

  125. Wiener RS, Wiener DC, Larson RJ. Benefits and risks of tight glucose control in critically ill adults: a meta-analysis. JAMA. 2008;300(8):933–44.

    Article  CAS  PubMed  Google Scholar 

  126. Finfer S, et al. Intensive versus conventional glucose control in critically ill patients. N Engl J Med. 2009;360(13):1283–97.

    Article  PubMed  Google Scholar 

  127. Vlasselaers D, et al. Intensive insulin therapy for patients in paediatric intensive care: a prospective, randomised controlled study. Lancet. 2009;373(9663):547–56.

    Article  CAS  PubMed  Google Scholar 

  128. Macrae D, et al. A randomized trial of hyperglycemic control in pediatric intensive care. N Engl J Med. 2014;370(2):107–18.

    Article  CAS  PubMed  Google Scholar 

  129. Finfer S, et al. Intensive versus conventional glucose control in critically ill patients with traumatic brain injury: long-term follow-up of a subgroup of patients from the NICE-SUGAR study. Intensive Care Med. 2015;41(6):1037–47.

    Article  PubMed  Google Scholar 

  130. Krinsley JS, Grover A. Severe hypoglycemia in critically ill patients: risk factors and outcomes. Crit Care Med. 2007;35(10):2262–7.

    Article  PubMed  Google Scholar 

  131. Ulate KP, et al. Strict glycemic targets need not be so strict: a more permissive glycemic range for critically ill children. Pediatrics. 2008;122(4):e898–904.

    Article  PubMed  Google Scholar 

  132. de Zegher F, et al. Clinical review 89: small as fetus and short as child: from endogenous to exogenous growth hormone. J Clin Endocrinol Metab. 1997;82(7):2021–6.

    PubMed  Google Scholar 

  133. Van den Berghe G, et al. The combined administration of GH-releasing peptide-2 (GHRP-2), TRH and GnRH to men with prolonged critical illness evokes superior endocrine and metabolic effects compared to treatment with GHRP-2 alone. Clin Endocrinol. 2002;56(5):655–69.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael S. D. Agus MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Peeler, K.R., Agus, M.S.D. (2018). The Endocrine Response to Critical Illness. In: Radovick, S., Misra, M. (eds) Pediatric Endocrinology. Springer, Cham. https://doi.org/10.1007/978-3-319-73782-9_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-73782-9_38

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-73781-2

  • Online ISBN: 978-3-319-73782-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics