Skip to main content

Nature Inspired Optimizations in Cloud Computing: Applications and Challenges

  • Chapter
  • First Online:
Cloud Computing for Optimization: Foundations, Applications, and Challenges

Part of the book series: Studies in Big Data ((SBD,volume 39))

Abstract

Cloud computing is an emerging area of research and is useful for all level of users from end users to top business companies. There are several research areas of cloud computing including load balancing, cost management, workflow scheduling etc., which has been the current research interest of researchers. To deal with such problems, some conventional methods are developed, which are not so effective. Since, last decade the use of nature inspired optimization in cloud computing is a major area of concern. In this chapter, a detailed (yet brief) survey report on the applicability of nature inspired algorithms in various cloud computing problems is highlighted. The chapter aims at providing a detailed knowledge about nature inspired optimization algorithms and their use in the above mentioned problems of cloud computing. Some future research directions of cloud computing and other application areas are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J. Kennedy, Russell Eberhart, Particle swarm optimization. Proc. IEEE Int. Conf. Neural Networks 4, 1942–1948 (1995)

    Article  Google Scholar 

  2. X.S. Yang, S. Deb, Cuckoo search via Lvy flights, in World Congress on Nature and Biologically Inspired Computing (NaBIC 2009) (IEEE, 2009), pp. 210–214

    Google Scholar 

  3. X.S. Yang, A new meta-heuristic bat-inspired algorithm, Nature Inspired Cooperative Strategies for Optimization (NICSO 2010), p. 6574

    Google Scholar 

  4. K.M. Passino, Biomimicry of bacterial foraging for distributed optimization and control. IEEE Control Syst. 22(3), 52–67 (2002)

    Article  MathSciNet  Google Scholar 

  5. D. Karaboga, B. Basturk, A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. J. Global Optim. 39(3), 459–471 (2007)

    Article  MathSciNet  Google Scholar 

  6. D. Teodorovi, M. DellOrco, Bee colony optimizationa cooperative learning approach to complex transportation problems, in Advanced OR and AI Methods in Transportation: Proceedings of 16th MiniEURO Conference and 10th Meeting of EWGT (13–16 September 2005) Poznan: Publishing House of the Polish Operational and System Research (2005), pp. 51–60

    Google Scholar 

  7. R. Tang, S. Fong, X.S. Yang, S. Deb, Wolf search algorithm with ephemeral memory, in IEEE Seventh International Conference on Digital Information Management (ICDIM) (2012), pp. 165–172

    Google Scholar 

  8. S.C. Chu, P.W. Tsai, J.S. Pan, Cat swarm optimization, in PRICAI 2006: Trends in artificial intelligence (Springer Berlin Heidelberg, 2006), pp. 854–858

    Google Scholar 

  9. X.S. Yang, Firefly algorithm, stochastic test functions and design optimization. Int. J. Bio-Inspired Comput. 2(2), 78–84 (2010)

    Article  Google Scholar 

  10. A. Mucherino, O. Seref, Monkey search: a novel metaheuristic search for global optimization. Data Min. Syst. Anal. Optim. Biomed. 953(1), 162–173, AIP Publishing (2007)

    Google Scholar 

  11. G.W. Yan, Z.J. Hao, A novel optimization algorithm based on atmosphere clouds model. Int. J. Comput. Intell. Appl. 1(2 (01)) (2013)

    Google Scholar 

  12. D. Simon, Biogeography-based optimization. IEEE Trans. Evolut. Comput. 12(6), 702–713 (2008)

    Article  Google Scholar 

  13. Y. Shi, An optimization algorithm based on brainstorming process, Emerging Research on Swarm Intelligence and Algorithm Optimization (2014)

    Google Scholar 

  14. R. Storn, K. Price, Differential evolution a simple and efficient heuristic for global optimization over continuous spaces. J. Global Optim. 11(4), 341–359 (1997)

    Google Scholar 

  15. H. Hernndez, C. Blum, Distributed graph coloring: an approach based on the calling behavior of Japanese tree frogs. Swarm Intell. 6(2), 117–150 (2012)

    Article  Google Scholar 

  16. X.S. Yang, Flower pollination algorithm for global optimization, in Unconventional computation and natural computation (Springer Berlin Heidelberg, 2012), pp. 240–249

    Chapter  Google Scholar 

  17. A. Mozaffari, A. Fathi, S. Behzadipour, The great salmon run: a novel bio-inspired algorithm for artificial system design and optimization. Int. J. Bio-Inspired Comput. 4(5), 286–301 (2012)

    Article  Google Scholar 

  18. S. He, Q.H. Wu, J.R. Saunders, Group search optimizer: an optimization algorithm inspired by animal searching behavior. IEEE Trans. Evolut. Comput. 13(5), 973–990 (2009)

    Article  Google Scholar 

  19. L.M. Zhang, C. Dahlmann, Y. Zhang, Human-inspired algorithms for continuous function optimization, in IEEE International Conference on Intelligent Computing and Intelligent Systems, ICIS 2009, Vol. 1 (2009), pp. 318–321

    Google Scholar 

  20. A.R. Mehrabian, C. Lucas, A novel numerical optimization algorithm inspired from weed colonization. Ecolo. Inf. 1(4), 355–366 (2006)

    Article  Google Scholar 

  21. U. Premaratne, J. Samarabandu, T. Sidhu, A new biologically inspired optimization algorithm, in International Conference on Industrial and Information Systems (ICIIS) (IEEE, 2009), pp. 279–284

    Google Scholar 

  22. S.H. Jung, Queen-bee evolution for genetic algorithms. Electron. Lett. 39(6) (2003)

    Article  Google Scholar 

  23. R. Hedayatzadeh, F.A. Salmassi, M. Keshtgari, R. Akbari, K. Ziarati, Termite colony optimization: A novel approach for optimizing continuous problems, in 18th Iranian Conference on In Electrical Engineering (ICEE) (IEEE, 2010), pp. 553–558

    Google Scholar 

  24. I. FisterJr, X.S. Yang, I. Fister, J. Brest, D. Fister, A brief review of nature-inspired algorithms for optimization (2013). arXiv preprint arXiv:1307.4186

  25. R. Buyya, C.S. Yeo, S. Venugopal, J. Broberg, I. Brandic, Cloud computing and emerging IT platforms: Vision, hype, and reality for delivering computing as the 5th utility. Future Gener. Comput. Syst. 25(6), 599–616 (2009)

    Article  Google Scholar 

  26. I. Foster, Y. Zhao, I. Raicu, S. Lu. Cloud computing and grid computing 360-degree compared. in Grid Computing Environments Workshop, IEEE, GCE’08 (2008), pp. 1–10

    Google Scholar 

  27. Q. Zhang, L. Cheng, R. Boutaba, Cloud computing: state-of-the-art and research challenges. J. Internet Serv. Appl. 1(1), 7–18 (2010)

    Article  Google Scholar 

  28. M. Armbrust, A. Fox, R. Griffith, A.D. Joseph, R. Katz, A. Konwinski, G. Lee et al., A view of cloud computing. Commun. ACM 53(4), 50–58 (2010)

    Article  Google Scholar 

  29. P. Mell, T. Grance, The NIST definition of cloud computing. National Institute of Standards and Technology, Information Technology Laboratory, Technical Report Version 15, (2009)

    Google Scholar 

  30. H. Das, G.S. Panda, B. Muduli, P.K. Rath. The complex network analysis of power grid: a case study of the West Bengal power network. in Intelligent Computing, Networking, and Informatics (Springer, New Delhi, 2014), pp. 17–29

    Google Scholar 

  31. Das, Himansu, S.K. Mishra, D.S. Roy, The topological structure of the Odisha power grid: a complex network analysis. IJMCA 1(1), 012–016 (2013)

    Google Scholar 

  32. Das, Himansu, D.S. Roy, A grid computing service for power system monitoring. Int. J. Comput. Appl. 62(20) (2013)

    Google Scholar 

  33. H. Das, A.K. Jena, P.K. Rath, B. Muduli, S.R. Das. Grid computing-based performance analysis of power system: a graph theoretic approach. in Intelligent Computing, Communication and Devices (Springer, New Delhi, 2015), pp. 259–266

    Google Scholar 

  34. I. Kar, R.N Ramakant Parida, H. Das, Energy aware scheduling using genetic algorithm in cloud data centers. in IEEE International Conference on Electrical, Electronics, and Optimization Techniques (ICEEOT) (2016), pp. 3545–3550

    Google Scholar 

  35. Sarkhel, Preeta, H. Das, L.K. Vashishtha. Task-Scheduling Algorithms in Cloud Environment. in Computational Intelligence in Data Mining (Springer, Singapore, 2017), pp. 553–562

    Google Scholar 

  36. C.R. Panigrahi, M. Tiwary, B. Pati, H. Das, Big Data and Cyber Foraging: Future Scope and Challenges. in Techniques and Environments for Big Data Analysis (Springer International Publishing, 2016), pp. 75–100

    Google Scholar 

  37. X. Xin, H. Yu, A game theory approach to fair and efficient resource allocation in cloud computing. Math. Probl. Eng. 2014, 1–14 (2014)

    Google Scholar 

  38. L. Mashayekhy, M.M. Nejad, D. Grosu, Cloud federations in the sky: Formation game and mechanism. IEEE Trans. Cloud Comput. 3(1), 14–27 (2015)

    Article  Google Scholar 

  39. A. Corradi, M. Fanelli, L. Foschini, VM consolidation: A real case based on openstack cloud. Future Gener. Comput. Syst. 32, 118–127 (2014)

    Article  Google Scholar 

  40. S. Nedevschi, L. Popa, G. Iannaccone, S. Ratnasamy, D. Wetherall, Reducing network energy consumption via sleeping and rate-adaptation, in NSDI, Vol. 8 (2008), p. 323336

    Google Scholar 

  41. P. Arroba et al., Server power modeling for run-time energy optimization of cloud computing facilities. Energy Procedia 62, 401–410 (2014)

    Article  Google Scholar 

  42. M.A. Sharkh, A. Shami, An evergreen cloud: Optimizing energy efficiency in heterogeneous cloud computing architectures. Veh. Commun. 9(11), 199–210 (2017)

    Article  Google Scholar 

  43. D.-M. Bui et al., Energy efficiency for cloud computing system based on predictive optimization. J. Parallel Distrib. Comput. 102, 103–114 (2017)

    Article  Google Scholar 

  44. Chun-Han Lin, Pi-Cheng Hsiu, Cheng-Kang Hsieh, Dynamic backlight scaling optimization: a cloud-based energy-saving service for mobile streaming applications. IEEE Trans. Comput. 63(2), 335–348 (2014)

    Article  MathSciNet  Google Scholar 

  45. M. Ferrara, E. Fabrizio, J. Virgone, M. Filippi, A simulation-based optimization method for cost-optimal analysis of nearly zero energy buildings. Energy Build. 84, 442–457 (2014)

    Article  Google Scholar 

  46. S. Wang, Z. Liu, Z. Zheng, Q. Sun, F. Yang, Particle swarm optimization for energy-aware virtual machine placement optimization in virtualized data centers, in IEEE International Conference on Parallel and Distributed Systems (ICPADS) (2013), pp. 102–109

    Google Scholar 

  47. H. Goudarzi, M. Ghasemazar, M. Pedram, IEEE 12th IEEE/ACM International Symposium on SLA-based optimization of power and migration cost in cloud computing (Cloud and Grid Computing (CCGrid), In Cluster, 2012), pp. 172–179

    Google Scholar 

  48. W. Shu, W. Wang, Y. Wang, A novel energy-efficient resource allocation algorithm based on immune clonal optimization for green cloud computing. EURASIP J. Wirel. Commun. Netw. 1 (2014)

    Google Scholar 

  49. A.P. Xiong, C.-X. Xu, Energy efficient multiresource allocation of virtual machine based on PSO in cloud data center. Math. Probl. Eng. (2014)

    Google Scholar 

  50. X.F. Liu, Z.H. Zhan, K.J. Du, W.N. Chen, Energy aware virtual machine placement scheduling in cloud computing based on ant colony optimization approach. in Proceedings of the 2014 ACM Annual Conference on Genetic and Evolutionary Computation (2014), pp. 41–48

    Google Scholar 

  51. D.L. Eager, E.D. Lazowska, J. Zahorjan, Adaptive load sharing in homogeneous 647 distributed systems. IEEE Trans. Softw. Eng. 12(5), 662675

    Google Scholar 

  52. E.J. Ghomi, A.M. Rahmani, N.N. Qader, Load-balancing Algorithms in Cloud Computing: A Survey. J. Netw. Comput. Appl. 88, 50–71 (2017)

    Google Scholar 

  53. A.S. Milani, N.J. Navimipour, Load balancing mechanisms and techniques in the cloud environments: systematic literature review and future trends. J. Netw. Comput. Appl. 71, 8698 (2016)

    Article  Google Scholar 

  54. M. Mesbahi, A.M. Rahmani, Load balancing in cloud computing: a state of the art survey. Int. J. Mod. Educ. Comput. Sci. 8(3) (2016)

    Article  Google Scholar 

  55. V.R.T. Kanakala, V.K. Reddy, Performance analysis of load balancing techniques in cloud computing environment. TELKOMNIKA Indones. J. Electr. Eng. 13(3), 568573 (2015a)

    Google Scholar 

  56. V.R.T. Kanakala, V.K. Reddy, Performance analysis of load balancing techniques in cloud computing environment. TELKOMNIKA Indones. J. Electr. Eng. 13(3), 568573 (2015b)

    Google Scholar 

  57. I.N. Ivanisenko, T.A. Radivilova, Survey of major load balancing algorithms in distributed system. in IEEE Information Technologies in Innovation Business Conference (ITIB) (2015), pp. 89–92

    Google Scholar 

  58. A.A.S. Farrag, S.A. Mahmoud, Intelligent Cloud Algorithms for Load Balancing problems: A Survey. IEEE in Proceedings of the Seventh International Conference on Intelligent Computing and Information Systems (ICICIS ’J 5) (2015), pp. 210–216

    Google Scholar 

  59. L.D. Dhinesh Babu, P. Venkata Krishna, Honey bee behavior inspired load balancing of tasks in cloud computing environments. Appl. Soft Comput. 13(5), 2292–2303 (2013)

    Google Scholar 

  60. K. Nishant, P. Sharma, V. Krishna, C. Gupta, K.P. Singh, R. Rastogi, Load balancing of nodes in cloud using ant colony optimization. in IEEE UKSim 14th International Conference on Computer Modelling and Simulation (UKSim) (2012), pp. 3–8

    Google Scholar 

  61. J. Gu, J. Hu, T. Zhao, G. Sun, A new resource scheduling strategy based on genetic algorithm in cloud computing environment. JCP J. Comput. 7(1), 42–52 (2012)

    Google Scholar 

  62. F. Ramezani, J. Lu, F.K. Hussain, Task-based system load balancing in cloud computing using particle swarm optimization. Int. J. Parallel Progm. Int. J. Parallel Program. 42(5), 739–754 (2013)

    Article  Google Scholar 

  63. K. Dasgupta, B. Mandai, P. Dutta, J.K. Mandai, S. Dam, A Genetic Algorithm (GA) based load balancing strategy for cloud computing. Int. Conf. Comput. Intell. Model. Tech. Appl. 10, 340–347 (2013)

    Google Scholar 

  64. B.K. Ruekaew, W. Kimpan, Virtual machine scheduling management on cloud computing using artificial bee colony, in Proceedings of the International MultiConference of Engineers and Computer Scientists, vol. 1 (2014)

    Google Scholar 

  65. H. Yuan, C. Li, M. Du, Optimal virtual machine resources scheduling based on improved particle swarm optimization in cloud computing. JSW J. Softw. 9(3), 705–708 (2014)

    Google Scholar 

  66. M.A. Tawfeek, A. EI-Sisi, A.E. Keshk, F.A. Torkey, Cloud task scheduling based on ant colony optimization, in 2013 8th International Conference on Computer Engineering & Systems (ICCES), vol. 12, no. 2 (2015), pp. 64–69

    Google Scholar 

  67. A. Al - maamari, F.A. Omara, Task scheduling using hybrid algorithm in cloud computing environments. IOSR J. Comput. Eng. 17(3), 96–106 (2015)

    Google Scholar 

  68. S. Dam, G. Mandal, K. Dasgupta, P. Dutta, Genetic algorithm and gravitational emulation based hybrid load balancing strategy in cloud computing. in IEEE Third International Conference on 2015 Computer, Communication, Control and Information Technology (C3it) (2015), pp. 1–7

    Google Scholar 

  69. T.S. Ashwin, S.G. Domanal, R.M. Guddeti, A Novel Bio-Inspired Load Balancing Of Virtual Machines In Cloud Environment. in IEEE International Conference On Cloud Computing In Emerging Markets (Ccem) (2014), pp. 1–4

    Google Scholar 

  70. S. Aslanzadeh, Z. Chaczko, Load balancing optimization in cloud computing: applying endocrine-particle swarm optimization. in 2015 IEEE International Conference On Electro/Information Technology (Eit) (2015), pp. 165–169

    Google Scholar 

  71. T. Wang, Z. Liu, Y. Chen, Y. Xu, X. Dai, Load balancing task scheduling based on genetic algorithm in cloud computing, in IEEE 12th International Conference On Dependable. Autonomic And Secure Computing (Dasc) (2014), pp. 146–152

    Google Scholar 

  72. Z. Zhang, X. Zhang, A load balancing mechanism based on ant colony and complex network theory in open cloud computing federation. in 2010 IEEE 2nd International Conference On 2010 May 30 IEEE Industrial Mechatronics And Automation (Icima), Vol. 2, pp. 240–243

    Google Scholar 

  73. E. Gupta, V. Deshpande, A technique based on ant colony optimization for load balancing in cloud data center. in 2014 IEEE International Conference On Information Technology (Icit) (2014), pp. 12–17

    Google Scholar 

  74. R. Kaur, N. Ghumman, Hybrid improved max min ant algorithm for load balancing in cloud. in International Conference On Communication, Computing and Systems (IEEE Icccs2014)

    Google Scholar 

  75. K. Pan, J. Chen, Load balancing in cloud computing environment based on an improved particle swarm optimization. in 2015 6th IEEE International Conference On Software Engineering And Service Science (Icsess) (2015), pp. 595–598

    Google Scholar 

  76. K.R. Babu, A.A. Joy, P. Samuel, Load balancing of tasks in cloud computing environment based on bee colony algorithm. in 2015 IEEE Fifth International Conference On Advances In Computing And Communications (Icacc) (2015), pp. 89–93

    Google Scholar 

  77. R. Achar, P.S. Thilagam, N. Soans, P.V. Vikyath, S. Rao, A.M. Vijeth, Load balancing in cloud based on live migration of virtual machines. in 2013 Annual IEEE India Conference (Indicon) (2013), pp. 1–5

    Google Scholar 

  78. F. Ramezani, J. Lu, F.K. Hussain, Task-based system load balancing in cloud computing using particle swarm optimization. Int. J. Parallel Program. 42(5), 739–754 (2014)

    Article  Google Scholar 

  79. S. Mohanty, P.K. Patra, S. Mohapatra, M. Ray, MPSO: A Novel Meta-Heuristics for Load Balancing in Cloud Computing. Int. J. Appl. Evolut. Comput. (IJAEC) 8(1), 1–25 (2017)

    Article  Google Scholar 

  80. K.M. Cho, P.W. Tsai, C.W. Tsai, C.S. Yang, A hybrid meta-heuristic algorithm for VM scheduling with load balancing in cloud computing. Neural Comput. Appl. 26(6), 1297–1309 (2015)

    Article  Google Scholar 

  81. D. Gabi, A.S. Ismail, A. Zainal, Z. Zakaria, Solving task scheduling problem in cloud computing environment using orthogonal Taguchi-Cat algorithm. Int. J. Electr. Comput. Eng. (IJECE) 7(3) (2017)

    Article  Google Scholar 

  82. M.G. Avram, Advantages and challenges of adopting cloud computing from an enterprise perspective. Procedia Technol. 12, 529534 (2014)

    Article  Google Scholar 

  83. M.D. Assuno, A. Costanzo, R. Buyya, A cost-benefit analysis of using cloud computing to extend the capacity of clusters. Clust. Comput. 13(3), 335347 (2010)

    Google Scholar 

  84. Y. Zhu, P. Liu, Multi-dimensional constrained cloud computing task scheduling mechanism based on genetic algorithm. Int. J. Online Eng. 9, 1518 (2013)

    Google Scholar 

  85. L. Wu, Y.J. Wang, C.K. Yan, Performance comparison of energy-aware task scheduling with GA and CRO algorithms in cloud environment, in Applied Mechanics and Materials (2014), p. 204208

    Google Scholar 

  86. F. Taoa, L.Z. Ying Fengb, T.W. Liaoc, CLPS-GA: A case library and Pareto solution-based hybrid genetic algorithm for energy-aware cloud service scheduling. Appl. Soft Comput. 19, 264279 (2014)

    Article  Google Scholar 

  87. K. Li, G. Xu, G. Zhao, Y. Dong, D. Wang, Cloud task scheduling based on load balancing ant colony optimization. in 2011 IEEE Sixth Annual Chinagrid Conference (ChinaGrid) (2011), pp. 3–9

    Google Scholar 

  88. S. Xue et al., An ACO-LB algorithm for task scheduling in the cloud environment. J. Softw. 9(2), 466473 (2014)

    MathSciNet  Google Scholar 

  89. S. Xue, J. Zhang, X. Xu, An improved algorithm based on ACO for cloud service PDTs scheduling. Adv. Inf. Sci. Serv. Sci. 4(18), 340348 (2012)

    Google Scholar 

  90. S. Kaur, A. Verma, An efficient approach to genetic algorithm for task scheduling in cloud computing environment. Int. J. Inf. Technol. Comput. Sci. 10, 7479 (2012)

    Google Scholar 

  91. Z. Yang et al., Optimized task scheduling and resource allocation in cloud computing using PSO based fitness function. Inf. Technol. J. 12(23), 70907095 (2013)

    Article  Google Scholar 

  92. S. Zhan, H. Huo, Improved PSO-based task scheduling algorithm in cloud computing. J. Inf. Comput. Sci. 9(13), 38213829 (2012)

    Google Scholar 

  93. K. Kaur, N. Kaur, K. Kaur, A Novel Context and Load-Aware Family Genetic Algorithm Based Task Scheduling in Cloud Computing, Data Engineering and Intelligent Computing (Springer, Singapore, 2018), pp. 521–531

    Google Scholar 

  94. H.B. Alla, S.B. Alla, A. Ezzati, A. Mouhsen, A novel architecture with dynamic queues based on fuzzy logic and particle swarm optimization algorithm for task scheduling in cloud computing. in Advances in Ubiquitous Networking 2 (Springer, Singapore, 2017) pp. 205–217

    Google Scholar 

  95. K.R. Kumari, P. Sengottuvelan, J. Shanthini, A hybrid approach of genetic algorithm and multi objective PSO task scheduling in cloud computing. Asian J. Res. Soc. Sci. Humanit. 7(3), 1260–1271 (2017)

    Google Scholar 

  96. W.-J. Wang, Y.-S. Chang, W.-T. Lo, Y.K. Lee, Adaptive scheduling for parallel tasks with QoS satisfaction for hybrid cloud environments. J. Supercomput. 66(2), 129 (2013)

    Google Scholar 

  97. E.N. Alkhanak, S.P. Lee, R. Rezaei, R.M. Parizi, Cost optimization approaches for scientific workflow scheduling in cloud and grid computing: A review, classifications, and open issues. J. Syst. Softw. 113, 1–26 (2016)

    Article  Google Scholar 

  98. W.N. Chen, J. Zhang, A set-based discrete PSO for cloud workflow scheduling with user-defined QoS constraints. in 2012 IEEE International Conference on Systems, Man, and Cybernetics (SMC) (2012), pp. 773–778

    Google Scholar 

  99. Z. Wu, Z. Ni, L. Gu, X. Liu, A revised discrete particle swarm optimization for cloud workflow scheduling. in 2010 IEEE International Conference on Computational Intelligence and Security (CIS) (2010), pp. 184–188

    Google Scholar 

  100. S. Pandey, L. Wu, S.M. Guru, R. Buyya, A particle swarm optimization-based heuristic for scheduling workflow applications in cloud computing environments. in 2010 24th IEEE international conference on Advanced information networking and applications (AINA) (2010), pp. 400–407

    Google Scholar 

  101. Z. Wu, X. Liu, Z. Ni, D. Yuan, Y. Yang, A market-oriented hierarchical scheduling strategy in cloud workflow systems. J. Supercomput. 1–38 (2013)

    Google Scholar 

  102. C. Wei-Neng, J. Zhang, An ant colony optimization approach to a grid workflow scheduling problem with various QoS requirements. in IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), Vol. 39, No. 1 (2009), pp. 29–43

    Google Scholar 

  103. H. Liu, D. Xu, H.K. Miao, Ant colony optimization based service flow scheduling with various QoS requirements in cloud computing. in IEEE 2011 First ACIS International Symposium on Software and Network Engineering (SSNE), pp. 53–58

    Google Scholar 

  104. J. Yu, R. Buyya, Scheduling scientific workflow applications with deadline and budget constraints using genetic algorithms. Sci. Program. 14, 217–230 (2006)

    Google Scholar 

  105. A.K. Talukder, M. Kirley, R. Buyya, Multiobjective differential evolution for scheduling workflow applications on global grids. Concurr. Comput. Pract. Exp. 21(13), 1742–1756 (2009)

    Article  Google Scholar 

  106. S. Pandey, L. Wu, S.M. Guru, R. Buyya, A particle swarm optimization-based heuristic for scheduling workflow applications in cloud computing environments. in IEEE 2010 24th IEEE international conference on Advanced information networking and applications (AINA) (2010), pp. 400–407

    Google Scholar 

  107. H.B. Alla, S.B. Alla, A. Ezzati, A. Mouhsen, A novel architecture with dynamic queues based on fuzzy logic and particle swarm optimization algorithm for task scheduling in cloud computing. in Advances in Ubiquitous Networking 2 (Springer, Singapore, 2017), pp. 205–217

    Google Scholar 

  108. B. Kumar, M. Kalra, P. Singh, Discrete binary cat swarm optimization for scheduling workflow applications in cloud systems. in 3rd International Conference on Computational Intelligence and Communication Technology (CICT) (IEEE, 2017), pp. 1–6

    Google Scholar 

  109. S. Prathibha, B. Latha, G. Suamthi, Particle swarm optimization based workflow scheduling for medical applications in cloud. Biomed. Res. 1(1) (2017)

    Google Scholar 

  110. D. Gabi, A.S. Ismail, A. Zainal, Z. Zakaria, Solving Task Scheduling Problem in Cloud Computing Environment Using Orthogonal Taguchi-Cat Algorithm. Int. J. Electr. Comput. Eng. (IJECE) 7(3) (2017)

    Article  Google Scholar 

  111. Y. Xu, K. Li, L. He, L. Zhang, K. Li, A hybrid chemical reaction optimization scheme for task scheduling on heterogeneous computing systems. IEEE Trans. parallel Distribut. Syst. 26(12), 3208–3222 (2015)

    Article  Google Scholar 

  112. Y. Jiang, Z. Shao, Y. Guo, A DAG scheduling scheme on heterogeneous computing systems using tuple-based chemical reaction optimization. Sci. World J. (2014)

    Google Scholar 

  113. S.S. Kim, J.H. Byeon, H. Yu, H. Liu, Biogeography-based optimization for optimal job scheduling in cloud computing. Appl. Math. Comput. 247, 266–280 (2014)

    MathSciNet  MATH  Google Scholar 

  114. V. Kumari, M. Kalra, S. Singh, Independent task scheduling in cloud environment using Big Bang-Big Crunch approach. in 2nd International Conference on Recent Advances in Engineering and Computational Sciences (RAECS) (IEEE, 2015), pp. 1–4

    Google Scholar 

  115. S. Selvarani, G. Sadhasivam, An intelligent water drop algorithm for optimizing task scheduling in grid environment. Int. Arab J. Inf. Technol. 13(6) (2016)

    Google Scholar 

  116. G. Guo-Ning, H. Ting-Lei, Genetic simulated annealing algorithm for task scheduling based on cloud computing environment, in Proceedings of International Conference on Intelligent Computing and Integrated Systems (2010), pp. 60–63

    Google Scholar 

  117. Q. Zhang, L. Cheng, R. Boutaba, Cloud computing: state-of-the-art and research challenges. J. Internet Serv. Appl. 1(1), 7–18 (2010)

    Article  Google Scholar 

  118. XenSource Inc, Xen, www.xensource.com

  119. F. Farahnakian, A. Ashraf, T. Pahikkala, P. Liljeberg, J. Plosila, I. Porres, H. Tenhunen, Using ant colony system to consolidate VMs for green cloud computing. IEEE Trans. Serv. Comput. 8(2), 187–198 (2015)

    Article  Google Scholar 

  120. S.E. Dashti, A.M. Rahmani, Dynamic VMs placement for energy efficiency by PSO in cloud computing. J. Exp. Theor. Artif. Intell. 28, 97–112 (2016)

    Article  Google Scholar 

  121. F. Farahnakian, A. Ashraf, P. Liljeberg, T. Pahikkala, J. Plosila, I. Porres, H. Tenhunen, Energy-aware dynamic VM consolidation in cloud data centers using ant colony system. in Cloud Computing (CLOUD) (2014), pp. 104–111

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Janmenjoy Nayak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nayak, J., Naik, B., Jena, A.K., Barik, R.K., Das, H. (2018). Nature Inspired Optimizations in Cloud Computing: Applications and Challenges. In: Mishra, B., Das, H., Dehuri, S., Jagadev, A. (eds) Cloud Computing for Optimization: Foundations, Applications, and Challenges. Studies in Big Data, vol 39. Springer, Cham. https://doi.org/10.1007/978-3-319-73676-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-73676-1_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-73675-4

  • Online ISBN: 978-3-319-73676-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics