Skip to main content

Number Sense: The Impact of a Measurement-Focused Program on Young Children’s Number Learning

  • Chapter
  • First Online:
Contemporary Research and Perspectives on Early Childhood Mathematics Education

Part of the book series: ICME-13 Monographs ((ICME13Mo))

Abstract

Children begin to form mathematical concepts at an early age and many of these concepts are linked to measurement experiences. Often mathematics education in pre-school and at the beginning of school is focused on numbers. In order to acknowledge children’s mathematical concepts and to build on them, a mathematics intervention program that focused on measurement replaced the usual mathematics curriculum for 40 children entering their first year of school in Australia. This chapter presents the results of the children’s performance on a one-to-one task-based interview that tested their number knowledge at the beginning and end of the school year. In addition, two case studies and some classroom stories from the intervention are described. Findings indicate that a measurement-based curriculum can stimulate the development of children’s number knowledge and their number sense.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Australian Association of Mathematics Teachers and Early Childhood Australia (AAMT & ECA). (2006). Position paper on early childhood mathematics. www.aamt.edu.au. Retrieved June 28, 2017.

  • Australian Curriculum Assessment and Reporting Authority (ACARA). (2012). Australian curriculum: Mathematics. http://www.australiancurriculum.edu.au/Mathematics/Curriculum/F-10. Retrieved June 28, 2017.

  • Benz, C. (2012). Attitudes of kindergarten educators about math. Journal für Mathematik-Didaktik, 33, 203–232.

    Article  Google Scholar 

  • Benz, C. (2014). Identifying quantities—Children’s constructions to compose collections from parts or decompose collections into parts. In U. Kortenkamp et al. (Eds.), Early Mathematics Learning, Selected Papers of the POEM 2012 Conference (pp. 189–203). New York: Springer.

    Google Scholar 

  • Bransford, J., Brown, A., & Cocking, R. (Eds.). (1999). How people learn. Washington, DC: National Academy Press.

    Google Scholar 

  • Cheeseman, J., McDonough, A., & Ferguson, S. (2012). The effects of creating rich learning environments for children to measure mass. In J. Dindyal, L. P. Cheng, & S. F. Ng (Eds.), Mathematics education: Expanding horizons (Proceedings of the 35th annual conference of the Mathematics Education Research Group of Australasia). Singapore: MERGA.

    Google Scholar 

  • Clarke, D. M., Cheeseman, J., Gervasoni, A., Gronn, D., Horne, M., McDonough, A., et al. (2002). Early numeracy research project: Final report, February 2002. Fitzroy, Victoria: Mathematics Teaching and Learning Centre, Australian Catholic University.

    Google Scholar 

  • Clarke, B. A., Clarke, D. M., & Cheeseman, J. (2006). The mathematical knowledge and understanding young children bring to school. Mathematics Education Research Journal, 18(1), 78–102.

    Article  Google Scholar 

  • Clements, D. H., & Sarama, J. (2009). Learning and teaching early math: The learning trajectories approach. New York: Routledge.

    Google Scholar 

  • Clements, D., & Sarama, J. (2011). Early childhood mathematics intervention. Science, 333(6045), 968–970.

    Article  Google Scholar 

  • Davydov, V. (1975). Logical and psychological problems of elementary mathematics as an academic subject. In L. P. Steffe (Ed.), Children’s capacity for learning mathematics. Soviet studies in the psychology of learning and teaching mathematics (Vol. VII, pp. 55–107). Chicago: University of Chicago.

    Google Scholar 

  • Davydov, V. V., Gorbov, S., Mukulina, T., Savelyeva, M., & Tabachnikova, N. (1999). Mathematics. Moscow, Russia: Moscow Press.

    Google Scholar 

  • Department of Education and Early Childhood Development (DEECD). (2006). Mathematics online interview. http://www.education.vic.gov.au/studentlearning/teachingresources/maths/interview/moi.htm. Retrieved March 4, 2012.

  • Dornheim, D. (2008). Prädiktion von Rechenleistung und Rechenschwäche: Der Beitrag von Zahlen-Vorwissen und allgemein-kognitiven Fähigkeiten. Berlin: Logos.

    Google Scholar 

  • Dougherty, B. J., & Zilliox, J. (2003). Voyaging from theory to practice in learning: Measure up. In N. A. Pateman, B. J. Daugherty, & J. T. Zilliox (Eds.), Proceedings of the 27th Conference of the International Group for the Psychology of Mathematics Education (PME) (Vol. 1, pp. 17–22). Honolulu: PME.

    Google Scholar 

  • Freudenthal, H. (1974). Soviet research on teaching algebra at lower grade of the elementary school. Educational Studies in Mathematics, 5(4), 391–412.

    Article  Google Scholar 

  • Fuson, K. C. (1982). An analysis of the counting-on solution procedure in addition. In T. P. Carpenter, J. M. Moser, & T. A. Romberg (Eds.), Addition and subtraction: A cognitive perspective (pp. 67–81). Hillsdale, NJ: Lawrence Erlbaum.

    Google Scholar 

  • Fuson, K. (1988). Children’s counting and concepts of number. New York: Springer.

    Book  Google Scholar 

  • Gasteiger, H. (2010). Elementare mathematische Bildung im Alltag der Kindertagesstätte: Grundlegung und Evaluation eines kompetenzorientierten Förderansatzes. Empirische Studien zur Didaktik der Mathematik: Bd. 3. Münster: waxmann.

    Google Scholar 

  • Gelman, R. (2000). The epigenesis of mathematical thinking. Journal of Applied Developmental Psychology, 21, 27–37.

    Article  Google Scholar 

  • Gelman, R., & Gallistel, C. R. (1978). The child’s understanding of number. Cambridge, Massachusetts: Harvard University Press.

    Google Scholar 

  • Ginsburg, H. P. (1982). The development of addition in the contexts of culture, social class, and race. In T. P. Carpenter, J. M. Moser, & T. A. Romberg (Eds.), Addition and subtraction: A cognitive perspective (pp. 191–210). Hillsdale, NJ: Lawrence Erlbaum.

    Google Scholar 

  • Ginsburg, H. P. (1997). Mathematics learning disabilities: A view from developmental psychology. Journal of Learning Disabilities, 30, 20–33.

    Article  Google Scholar 

  • Howell, S., & Kemp, C. (2005). Defining early number sense: A participatory Australian study. Educational Psychology, 25(5), 555–571.

    Article  Google Scholar 

  • Kamii, C. (2003). Young children continue to reinvent arithmetic—2nd grade: Implications of Piaget’s theory. New York: Teachers’ College Press.

    Google Scholar 

  • Klein, A., & Starkey, P. (1988). Universals in the development of early arithmetic cognition. New Directions for Child and Adolescent Development, 1988(41), 5–26.

    Article  Google Scholar 

  • Krajewski, K. (2013). Wie bekommen die Zahlen einen Sinn: ein entwicklungspsychologisches Modell der zunehmenden Verknüpfung von Zahlen und Größen. Rechenstörungen bei Kindern: Neurowissenschaft, Psychologie, Pädagogik, 2, 155–179.

    Article  Google Scholar 

  • Lorenz, J. H. (2012). Kinder begreifen Mathematik – Frühe mathematische Bildung und Förderung. Stuttgart: Kohlammer.

    Google Scholar 

  • MacDonald, A. (2012). Young children’s photographs of measurement in the home. Early Years, 32(1), 71–85.

    Google Scholar 

  • MacDonald, A., & Rafferty, J. (2015). Investigating mathematics, science and technology in early childhood. South Melbourne, Victoria: Oxford University Press.

    Google Scholar 

  • McIntosh, A., Reys, B. J., & Reys, R. E. (1992). A proposed framework for examining basic number sense. For the Learning of Mathematics, 12, 2–8.

    Google Scholar 

  • Mulligan, J. T., & Mitchelmore, M. (2009). Awareness of pattern and structure in early mathematical development. Mathematics Education Research Journal, 21(2), 33–49.

    Article  Google Scholar 

  • Otte, M. (1976). Die didaktischen Systeme von V.V. Davidov/D.B. Elkonin einerseits und L.V. Zankov andererseits, Skizze einer kritischen Auseinandersetzung. Educational Studies in Mathematics, 6(4), 475–497.

    Google Scholar 

  • Peter-Koop, A., & Kollhoff, S. (2015). Transition to school: Prior to school mathematical skills and knowledge of low-achieving children at the end of grade 1. In B. Perry, A. MacDonald, & A. Gervasoni (Eds.), International perspectives: Mathematics and transition to school (pp. 65–83). Singapore: Springer.

    Google Scholar 

  • Rinaldi, C. (2006). In dialogue with Reggio Emilia. New York: Routledge.

    Book  Google Scholar 

  • Sophian, C. (2007). The origins of mathematical knowledge in childhood. New York: Lawrence Erlbaum Associates.

    Google Scholar 

  • Steffe, L. P. (2010). On children’s construction of quantification. http://www.uwyo.edu/wisdome/_files/documents/steffe.pdf. Retrieved June 28, 2017.

  • Steinweg, A. S. (2013). Algebra in der Grundschule. Heidelberg: Springer.

    Book  Google Scholar 

  • Sullivan, P. (2011). Teaching mathematics: Using research-informed strategies. http://research.acer.edu.au/aer/13. Retrieved June 28, 2017.

  • Van den Akker, J. (2003). Curriculum perspectives: An introduction. In J. van den Akker, W. Kuiper, & U. Hameyer (Eds.), Curriculum landscapes and trends (pp. 1–10). The Netherlands: Springer.

    Chapter  Google Scholar 

  • Van den Akker, J., Gravemeijer, K., McKenney, S., & Nieveen, N. (2006). Introducing educational design research. Educational Design Research, 1, 3–7.

    Google Scholar 

  • Van den Heuvel-Panhuizen, M., & Buys, K. (2008). Young children learn measurement and geometry. Utrecht, The Netherlands: Freudenthal Institute.

    Google Scholar 

  • Vygotsky, L. (1978). Mind and society: The development of higher psychological processes. Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Wang, A. H. (2010). Optimizing early mathematics experiences for children from low-income families: A study on opportunity to learn mathematics. Early Childhood Education Journal, 37(4), 295–302.

    Article  Google Scholar 

  • Young-Loveridge, J. (1989). The development of children’s number concepts: The first year of school. New Zealand Journal of Educational Studies, 24(1), 47–64.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jill Cheeseman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cheeseman, J., Benz, C., Pullen, Y. (2018). Number Sense: The Impact of a Measurement-Focused Program on Young Children’s Number Learning. In: Elia, I., Mulligan, J., Anderson, A., Baccaglini-Frank, A., Benz, C. (eds) Contemporary Research and Perspectives on Early Childhood Mathematics Education. ICME-13 Monographs. Springer, Cham. https://doi.org/10.1007/978-3-319-73432-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-73432-3_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-73431-6

  • Online ISBN: 978-3-319-73432-3

  • eBook Packages: EducationEducation (R0)

Publish with us

Policies and ethics