Skip to main content

Background and Presentation of Thrombotic Thrombocytopenic Purpura

  • Chapter
  • First Online:
Immune Hematology
  • 1176 Accesses

Abstract

Thrombotic thrombocytopenic purpura (TTP) is a thrombotic microangiopathy (TMA) characterized by platelet-rich microthrombi which occlude capillaries and result in thrombocytopenia, hemolytic anemia, and organ damage. The mortality rate is about 90% in untreated individuals, carrying significant long-term morbidity for survivors. TTP is a rare condition, having many clinical features that overlap other TMA syndromes and more common hematology disorders. Timely recognition and treatment are critical for patient survival. The “classic pentad” of TTP (thrombocytopenia, microangiopathic hemolytic anemia, neurologic abnormalities, renal failure, and fever) is an uncommon presentation as TTP frequently presents with vague and nonspecific clinical signs and symptoms. The cause is a marked decrease in the von Willebrand factor-cleaving protease, ADAMTS-13, either through inhibitory antibodies or a congenital deficiency of the enzyme.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Moschcowitz E. Hyaline thrombosis of the terminal arterioles and capillaries: a hitherto undescribed disease. Proc N Y Pathol Soc. 1924;24:21–4.

    Google Scholar 

  2. Gore I. Disseminated arteriolar and capillary platelet thrombosis; a morphologic study of its histogenesis. Am J Pathol. 1950;26(1):155–75, incl 4 pl

    PubMed  PubMed Central  CAS  Google Scholar 

  3. Amorosi E, Ultmann J. Thrombotic thrombocytopenic purpura: report of 16 cases and review of the literature. Medicine. 1966;45(2):139–60.

    Article  Google Scholar 

  4. Lian EC, Harkness DR, Byrnes JJ, Wallach H, Nunez R. Presence of a platelet aggregating factor in the plasma of patients with thrombotic thrombocytopenic purpura (TTP) and its inhibition by normal plasma. Blood. 1979;53(2):333–8.

    PubMed  CAS  Google Scholar 

  5. Lian EC. The role of increased platelet aggregation in TTP. Semin Thromb Hemost. 1980;6(4):401–15.

    Article  PubMed  CAS  Google Scholar 

  6. Moake JL, Rudy CK, Troll JH, Weinstein MJ, Colannino NM, Azocar J, et al. Unusually large plasma factor VIII:von Willebrand factor multimers in chronic relapsing thrombotic thrombocytopenic purpura. N Engl J Med. 1982;307(23):1432–5.

    Article  PubMed  CAS  Google Scholar 

  7. Moake JL, Turner NA, Stathopoulos NA, Nolasco LH, Hellums JD. Involvement of large plasma von Willebrand factor (vWF) multimers and unusually large vWF forms derived from endothelial cells in shear stress-induced platelet aggregation. J Clin Invest. 1986;78(6):1456–61.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Tsai HM, Sussman II, Nagel RL. Shear stress enhances the proteolysis of von Willebrand factor in normal plasma. Blood. 1994;83(8):2171–9.

    PubMed  CAS  Google Scholar 

  9. Furlan M, Robles R, Lammle B. Partial purification and characterization of a protease from human plasma cleaving von Willebrand factor to fragments produced by in vivo proteolysis. Blood. 1996;87(10):4223–34.

    PubMed  CAS  Google Scholar 

  10. Tsai HM. Physiologic cleavage of von Willebrand factor by a plasma protease is dependent on its conformation and requires calcium ion. Blood. 1996;87(10):4235–44.

    PubMed  CAS  Google Scholar 

  11. Furlan M, Robles R, Galbusera M, Remuzzi G, Kyrle PA, Brenner B, et al. von Willebrand factor-cleaving protease in thrombotic thrombocytopenic purpura and the hemolytic-uremic syndrome. N Engl J Med. 1998;339(22):1578–84.

    Article  PubMed  CAS  Google Scholar 

  12. Tsai HM, Lian EC. Antibodies to von Willebrand factor-cleaving protease in acute thrombotic thrombocytopenic purpura. N Engl J Med. 1998;339(22):1585–94.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Levy GG, Nichols WC, Lian EC, Foroud T, McClintick JN, McGee BM, et al. Mutations in a member of the ADAMTS gene family cause thrombotic thrombocytopenic purpura. Nature. 2001;413(6855):488–94.

    Article  PubMed  CAS  Google Scholar 

  14. Upshaw JD Jr. Congenital deficiency of a factor in normal plasma that reverses microangiopathic hemolysis and thrombocytopenia. N Engl J Med. 1978;298(24):1350–2.

    Article  PubMed  Google Scholar 

  15. Schulman I, Pierce M, Lukens A, Currimbhoy Z. Studies on thrombopoiesis. I. A factor in normal human plasma required for platelet production; chronic thrombocytopenia due to its deficiency. Blood. 1960;16:943–57.

    PubMed  CAS  Google Scholar 

  16. Furlan M, Robles R, Solenthaler M, Lammle B. Acquired deficiency of von Willebrand factor-cleaving protease in a patient with thrombotic thrombocytopenic purpura. Blood. 1998;91(8):2839–46.

    PubMed  CAS  Google Scholar 

  17. Moake JL, Rudy CK, Troll JH, Schafer AI, Weinstein MJ, Colannino NM, et al. Therapy of chronic relapsing thrombotic thrombocytopenic purpura with prednisone and azathioprine. Am J Hematol. 1985;20(1):73–9.

    Article  PubMed  CAS  Google Scholar 

  18. Burke HA Jr, Hartmann RC. Thrombotic thrombocytopenic purpura two patients with remission associated with the use of large amounts of steroids. AMA Arch Intern Med. 1959;103(1):105–12.

    Article  PubMed  Google Scholar 

  19. Rubinstein MA, Kagan BM, Macgillviray MH, Merliss R, Sacks H. Unusual remission in a case of thrombotic thrombocytopenic purpura syndrome following fresh blood exchange transfusions. Ann Intern Med. 1959;51:1409–19.

    Article  PubMed  CAS  Google Scholar 

  20. Byrnes JJ, Khurana M. Treatment of thrombotic thrombocytopenic purpura with plasma. N Engl J Med. 1977;297(25):1386–9.

    Article  PubMed  CAS  Google Scholar 

  21. Bukowski RM, King JW, Hewlett JS. Plasmapheresis in the treatment of thrombotic thrombocytopenic purpura. Blood. 1977;50(3):413–7.

    PubMed  CAS  Google Scholar 

  22. Rock GA, Shumak KH, Buskard NA, Blanchette VS, Kelton JG, Nair RC, et al. Comparison of plasma exchange with plasma infusion in the treatment of thrombotic thrombocytopenic purpura. Canadian Apheresis Study Group. N Engl J Med. 1991;325(6):393–7.

    Article  PubMed  CAS  Google Scholar 

  23. Reese JA, Muthurajah DS, Kremer Hovinga JA, Vesely SK, Terrell DR, George JN. Children and adults with thrombotic thrombocytopenic purpura associated with severe, acquired Adamts13 deficiency: comparison of incidence, demographic and clinical features. Pediatr Blood Cancer. 2013;60(10):1676–82.

    Article  PubMed  Google Scholar 

  24. Mansouri Taleghani M, von Krogh AS, Fujimura Y, George JN, Hrachovinova I, Knobl PN, et al. Hereditary thrombotic thrombocytopenic purpura and the hereditary TTP registry. Hamostaseologie. 2013;33(2):138–43.

    Article  PubMed  CAS  Google Scholar 

  25. Furlan M, Lammle B. Aetiology and pathogenesis of thrombotic thrombocytopenic purpura and haemolytic uraemic syndrome: the role of von Willebrand factor-cleaving protease. Best Pract Res Clin Haematol. 2001;14(2):437–54.

    Article  PubMed  CAS  Google Scholar 

  26. Moatti-Cohen M, Garrec C, Wolf M, Boisseau P, Galicier L, Azoulay E, et al. Unexpected frequency of Upshaw-Schulman syndrome in pregnancy-onset thrombotic thrombocytopenic purpura. Blood. 2012;119(24):5888–97.

    Article  PubMed  CAS  Google Scholar 

  27. von Auer C, von Krogh AS, Kremer Hovinga JA, Lammle B. Current insights into thrombotic microangiopathies: thrombotic thrombocytopenic purpura and pregnancy. Thromb Res. 2015;135(Suppl 1):S30–3.

    Article  CAS  Google Scholar 

  28. Mariotte E, Azoulay E, Galicier L, Rondeau E, Zouiti F, Boisseau P, et al. Epidemiology and pathophysiology of adulthood-onset thrombotic microangiopathy with severe ADAMTS13 deficiency (thrombotic thrombocytopenic purpura): a cross-sectional analysis of the French national registry for thrombotic microangiopathy. Lancet Haematol. 2016;3(5):e237–45.

    Article  PubMed  Google Scholar 

  29. Lotta LA, Garagiola I, Palla R, Cairo A, Peyvandi F. ADAMTS13 mutations and polymorphisms in congenital thrombotic thrombocytopenic purpura. Hum Mutat. 2010;31(1):11–9.

    Article  PubMed  CAS  Google Scholar 

  30. Moake JL. Thrombotic microangiopathies. N Engl J Med. 2002;347(8):589–600.

    Article  PubMed  CAS  Google Scholar 

  31. Pennington H. Escherichia coli O157. Lancet. 2010;376(9750):1428–35.

    Article  PubMed  CAS  Google Scholar 

  32. Mark TC. Enterohaemorrhagic Escherichia coli and Shigella dysenteriae type 1-induced haemolytic uraemic syndrome. Pediatr Nephrol. 2008;23(9):1425–31.

    Article  Google Scholar 

  33. Hussein HS, Bollinger LM. Prevalence of Shiga toxin-producing Escherichia coli in beef cattle. J Food Prot. 2005;68(10):2224–41.

    Article  PubMed  Google Scholar 

  34. Milnes AS, Stewart I, Clifton-Hadley FA, Davies RH, Newell DG, Sayers AR, et al. Intestinal carriage of verocytotoxigenic Escherichia coli O157, Salmonella, thermophilic Campylobacter and Yersinia enterocolitica, in cattle, sheep and pigs at slaughter in Great Britain during 2003. Epidemiol Infect. 2008;136(6):739–51.

    Article  PubMed  CAS  Google Scholar 

  35. Huang J, Motto DG, Bundle DR, Sadler JE. Shiga toxin B subunits induce VWF secretion by human endothelial cells and thrombotic microangiopathy in ADAMTS13-deficient mice. Blood. 2010;116(18):3653–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Chandler WL, Jelacic S, Boster DR, Ciol MA, Williams GD, Watkins SL, et al. Prothrombotic coagulation abnormalities preceding the hemolytic-uremic syndrome. N Engl J Med. 2002;346(1):23–32.

    Article  PubMed  CAS  Google Scholar 

  37. Robinson LA, Hurley RM, Lingwood C, Matsell DG. Escherichia coli verotoxin binding to human paediatric glomerular mesangial cells. Pediatr Nephrol. 1995;9(6):700–4.

    Article  PubMed  CAS  Google Scholar 

  38. Lingwood CA. Verotoxin-binding in human renal sections. Nephron. 1994;66(1):21–8.

    Article  PubMed  CAS  Google Scholar 

  39. Hughes AK, Stricklett PK, Kohan DE. Shiga toxin-1 regulation of cytokine production by human glomerular epithelial cells. Nephron. 2001;88(1):14–23.

    Article  PubMed  CAS  Google Scholar 

  40. Bell BP, Goldoft M, Griffin PM, Davis MA, Gordon DC, Tarr PI, et al. A multistate outbreak of Escherichia coli O157:H7-associated bloody diarrhea and hemolytic uremic syndrome from hamburgers. The Washington experience. JAMA. 1994;272(17):1349–53.

    Article  PubMed  CAS  Google Scholar 

  41. Tarr PI, Gordon CA, Chandler WL. Shiga-toxin-producing Escherichia coli and haemolytic uraemic syndrome. Lancet. 2005;365(9464):1073–86.

    PubMed  CAS  Google Scholar 

  42. Fakhouri F, Zuber J, Fremeaux-Bacchi V, Loirat C. Haemolytic uraemic syndrome. Lancet. 2017;390(10095):681–96.

    Article  PubMed  Google Scholar 

  43. Bale JF Jr, Brasher C, Siegler RL. CNS manifestations of the hemolytic-uremic syndrome. Relationship to metabolic alterations and prognosis. Am J Dis Child. 1980;134(9):869–72.

    Article  PubMed  Google Scholar 

  44. Fremeaux-Bacchi V, Dragon-Durey MA, Blouin J, Vigneau C, Kuypers D, Boudailliez B, et al. Complement factor I: a susceptibility gene for atypical haemolytic uraemic syndrome. J Med Genet. 2004;41(6):e84.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Richards A, Kemp EJ, Liszewski MK, Goodship JA, Lampe AK, Decorte R, et al. Mutations in human complement regulator, membrane cofactor protein (CD46), predispose to development of familial hemolytic uremic syndrome. Proc Natl Acad Sci U S A. 2003;100(22):12966–71.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Goicoechea de Jorge E, Harris CL, Esparza-Gordillo J, Carreras L, Arranz EA, Garrido CA, et al. Gain-of-function mutations in complement factor B are associated with atypical hemolytic uremic syndrome. Proc Natl Acad Sci U S A. 2007;104(1):240–5.

    Article  PubMed  CAS  Google Scholar 

  47. Ying L, Katz Y, Schlesinger M, Carmi R, Shalev H, Haider N, et al. Complement factor H gene mutation associated with autosomal recessive atypical hemolytic uremic syndrome. Am J Hum Genet. 1999;65(6):1538–46.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Dragon-Durey MA, Loirat C, Cloarec S, Macher MA, Blouin J, Nivet H, et al. Anti-factor H autoantibodies associated with atypical hemolytic uremic syndrome. J Am Soc Nephrol. 2005;16(2):555–63.

    Article  PubMed  CAS  Google Scholar 

  49. Fremeaux-Bacchi V, Miller EC, Liszewski MK, Strain L, Blouin J, Brown AL, et al. Mutations in complement C3 predispose to development of atypical hemolytic uremic syndrome. Blood. 2008;112(13):4948–52.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Sperati CJ, Moliterno AR. Thrombotic microangiopathy: focus on atypical hemolytic uremic syndrome. Hematol Oncol Clin North Am. 2015;29(3):541–59.

    Article  PubMed  Google Scholar 

  51. Greenbaum LA. Atypical hemolytic uremic syndrome. Adv Pediatr. 2014;61(1):335–56.

    Article  PubMed  Google Scholar 

  52. George JN, Nester CM. Syndromes of thrombotic microangiopathy. N Engl J Med. 2014;371(7):654–66.

    Article  PubMed  CAS  Google Scholar 

  53. Bresin E, Rurali E, Caprioli J, Sanchez-Corral P, Fremeaux-Bacchi V, Rodriguez de Cordoba S, et al. Combined complement gene mutations in atypical hemolytic uremic syndrome influence clinical phenotype. J Am Soc Nephrol. 2013;24(3):475–86.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Nayer A, Asif A. Atypical hemolytic-uremic syndrome: a clinical review. Am J Ther. 2016;23(1):e151–8.

    Article  PubMed  Google Scholar 

  55. Caprioli J, Noris M, Brioschi S, Pianetti G, Castelletti F, Bettinaglio P, et al. Genetics of HUS: the impact of MCP, CFH, and IF mutations on clinical presentation, response to treatment, and outcome. Blood. 2006;108(4):1267–79.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Shatzel JJ, Taylor JA. Syndromes of thrombotic microangiopathy. Med Clin North Am. 2017;101(2):395–415.

    Article  PubMed  Google Scholar 

  57. Loirat C, Niaudet P. The risk of recurrence of hemolytic uremic syndrome after renal transplantation in children. Pediatr Nephrol. 2003;18(11):1095–101.

    Article  PubMed  Google Scholar 

  58. Skerka C, Jozsi M, Zipfel PF, Dragon-Durey MA, Fremeaux-Bacchi V. Autoantibodies in haemolytic uraemic syndrome (HUS). Thromb Haemost. 2009;101(2):227–32.

    PubMed  CAS  Google Scholar 

  59. Legendre CM, Licht C, Muus P, Greenbaum LA, Babu S, Bedrosian C, et al. Terminal complement inhibitor eculizumab in atypical hemolytic-uremic syndrome. N Engl J Med. 2013;368(23):2169–81.

    Article  PubMed  CAS  Google Scholar 

  60. Mannucci PM, Cugno M. The complex differential diagnosis between thrombotic thrombocytopenic purpura and the atypical hemolytic uremic syndrome: laboratory weapons and their impact on treatment choice and monitoring. Thromb Res. 2015;136(5):851–4.

    Article  PubMed  CAS  Google Scholar 

  61. Licht C, Weyersberg A, Heinen S, Stapenhorst L, Devenge J, Beck B, et al. Successful plasma therapy for atypical hemolytic uremic syndrome caused by factor H deficiency owing to a novel mutation in the complement cofactor protein domain 15. Am J kidney Dis. 2005;45(2):415–21.

    Article  PubMed  CAS  Google Scholar 

  62. Nishimura J, Yamamoto M, Hayashi S, Ohyashiki K, Ando K, Brodsky AL, et al. Genetic variants in C5 and poor response to eculizumab. N Engl J Med. 2014;370(7):632–9.

    Article  PubMed  CAS  Google Scholar 

  63. Benamu E, Montoya JG. Infections associated with the use of eculizumab: recommendations for prevention and prophylaxis. Curr Opin Infect Dis. 2016;29(4):319–29.

    Article  PubMed  CAS  Google Scholar 

  64. Webb RF, Ramirez AM, Hocken AG, Pettit JE. Acute intravascular haemolysis due to quinine. N Z Med J. 1980;91(651):14–6.

    PubMed  CAS  Google Scholar 

  65. Gottschall JL, Neahring B, McFarland JG, Wu GG, Weitekamp LA, Aster RH. Quinine-induced immune thrombocytopenia with hemolytic uremic syndrome: clinical and serological findings in nine patients and review of literature. Am J Hematol. 1994;47(4):283–9.

    Article  PubMed  CAS  Google Scholar 

  66. Glynne P, Salama A, Chaudhry A, Swirsky D, Lightstone L. Quinine-induced immune thrombocytopenic purpura followed by hemolytic uremic syndrome. Am J Kidney Dis. 1999;33(1):133–7.

    Article  PubMed  CAS  Google Scholar 

  67. Kojouri K, Vesely SK, George JN. Quinine-associated thrombotic thrombocytopenic purpura-hemolytic uremic syndrome: frequency, clinical features, and long-term outcomes. Ann Intern Med. 2001;135(12):1047–51.

    Article  PubMed  CAS  Google Scholar 

  68. Huynh M, Chee K, Lau DH. Thrombotic thrombocytopenic purpura associated with quetiapine. Ann Pharmacother. 2005;39(7–8):1346–8.

    Article  PubMed  Google Scholar 

  69. Saif MW, Xyla V, Makrilia N, Bliziotis I, Syrigos K. Thrombotic microangiopathy associated with gemcitabine: rare but real. Expert Opin Drug Saf. 2009;8(3):257–60.

    Article  PubMed  CAS  Google Scholar 

  70. Bennett CL, Weinberg PD, Rozenberg-Ben-Dror K, Yarnold PR, Kwaan HC, Green D. Thrombotic thrombocytopenic purpura associated with ticlopidine. A review of 60 cases. Ann Intern Med. 1998;128(7):541–4.

    Article  PubMed  CAS  Google Scholar 

  71. Bennett CL, Connors JM, Carwile JM, Moake JL, Bell WR, Tarantolo SR, et al. Thrombotic thrombocytopenic purpura associated with clopidogrel. N Engl J Med. 2000;342(24):1773–7.

    Article  PubMed  CAS  Google Scholar 

  72. Sartelet H, Toupance O, Lorenzato M, Fadel F, Noel LH, Lagonotte E, et al. Sirolimus-induced thrombotic microangiopathy is associated with decreased expression of vascular endothelial growth factor in kidneys. Am J Transpl. 2005;5(10):2441–7.

    Article  Google Scholar 

  73. Rabadi SJ, Khandekar JD, Miller HJ. Mitomycin-induced hemolytic uremic syndrome: case presentation and review of literature. Cancer Treat Rep. 1982;66(5):1244–7.

    PubMed  CAS  Google Scholar 

  74. Moake JL, Byrnes JJ. Thrombotic microangiopathies associated with drugs and bone marrow transplantation. Hematol Oncol Clin North Am. 1996;10(2):485–97.

    Article  PubMed  CAS  Google Scholar 

  75. Singh N, Gayowski T, Marino IR. Hemolytic uremic syndrome in solid-organ transplant recipients. Transpl Int. 1996;9(1):68–75.

    Article  PubMed  CAS  Google Scholar 

  76. Humar A, Jessurun J, Sharp HL, Gruessner RW. Hemolytic uremic syndrome in small-bowel transplant recipients: the first two case reports. Transpl Int. 1999;12(5):387–90.

    Article  PubMed  CAS  Google Scholar 

  77. Ambruzs JM, Serrell PB, Rahim N, Larsen CP. Thrombotic microangiopathy and acute kidney injury associated with intravenous abuse of an oral extended-release formulation of oxymorphone hydrochloride: kidney biopsy findings and report of 3 cases. Am J Kidney Dis. 2014;63(6):1022–6.

    Article  PubMed  Google Scholar 

  78. Centers for Disease Control and Prevention (CDC). Thrombotic thrombocytopenic purpura (TTP)-like illness associated with intravenous Opana ER abuse—Tennessee, 2012. MMWR Morb Mortal Wkly Rep. 2013;62(1):1–4.

    Google Scholar 

  79. Lammle B. Opana ER-induced thrombotic microangiopathy. Blood. 2017;129(7):808–9.

    Article  PubMed  CAS  Google Scholar 

  80. Beck BB, van Spronsen F, Diepstra A, Berger RM, Komhoff M. Renal thrombotic microangiopathy in patients with cblC defect: review of an under-recognized entity. Pediatr Nephrol. 2016;32(5):733–41.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Koenig JC, Rutsch F, Bockmeyer C, Baumgartner M, Beck BB, Kranz B, et al. Nephrotic syndrome and thrombotic microangiopathy caused by cobalamin C deficiency. Pediatr Nephrol. 2015;30(7):1203–6.

    Article  PubMed  Google Scholar 

  82. Coppola A, Davi G, De Stefano V, Mancini FP, Cerbone AM, Di Minno G. Homocysteine, coagulation, platelet function, and thrombosis. Semin Thromb Hemost. 2000;26(3):243–54.

    Article  PubMed  CAS  Google Scholar 

  83. Brunelli SM, Meyers KE, Guttenberg M, Kaplan P, Kaplan BS. Cobalamin C deficiency complicated by an atypical glomerulopathy. Pediatr Nephrol. 2002;17(10):800–3.

    Article  PubMed  Google Scholar 

  84. Lemaire M, Fremeaux-Bacchi V, Schaefer F, Choi M, Tang WH, Le Quintrec M, et al. Recessive mutations in DGKE cause atypical hemolytic-uremic syndrome. Nat Genet. 2013;45(5):531–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Ozaltin F, Li B, Rauhauser A, An SW, Soylemezoglu O, Gonul II, et al. DGKE variants cause a glomerular microangiopathy that mimics membranoproliferative GN. J Am Soc Nephrol. 2013;24(3):377–84.

    Article  PubMed  CAS  Google Scholar 

  86. Pettitt TR, Martin A, Horton T, Liossis C, Lord JM, Wakelam MJ. Diacylglycerol and phosphatidate generated by phospholipases C and D, respectively, have distinct fatty acid compositions and functions. Phospholipase D-derived diacylglycerol does not activate protein kinase C in porcine aortic endothelial cells. J Biol Chem. 1997;272(28):17354–9.

    Article  PubMed  CAS  Google Scholar 

  87. Carew MA, Paleolog EM, Pearson JD. The roles of protein kinase C and intracellular Ca2+ in the secretion of von Willebrand factor from human vascular endothelial cells. Biochem J. 1992;286(Pt 2):631–5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Ren S, Shatadal S, Shen GX. Protein kinase C-beta mediates lipoprotein-induced generation of PAI-1 from vascular endothelial cells. Am J Physiol Endocrinol Metab. 2000;278(4):E656–62.

    Article  PubMed  CAS  Google Scholar 

  89. Whatley RE, Nelson P, Zimmerman GA, Stevens DL, Parker CJ, McIntyre TM, et al. The regulation of platelet-activating factor production in endothelial cells. The role of calcium and protein kinase C. J Biol Chem. 1989;264(11):6325–33.

    PubMed  CAS  Google Scholar 

  90. Herbert JM, Savi P, Laplace MC, Dumas A, Dol F. Chelerythrine, a selective protein kinase C inhibitor, counteracts pyrogen-induced expression of tissue factor without effect on thrombomodulin down-regulation in endothelial cells. Thromb Res. 1993;71(6):487–93.

    Article  PubMed  CAS  Google Scholar 

  91. Levin EG, Marotti KR, Santell L. Protein kinase C and the stimulation of tissue plasminogen activator release from human endothelial cells. Dependence on the elevation of messenger RNA. J Biol Chem. 1989;264(27):16030–6.

    PubMed  CAS  Google Scholar 

  92. Eremina V, Jefferson JA, Kowalewska J, Hochster H, Haas M, Weisstuch J, et al. VEGF inhibition and renal thrombotic microangiopathy. N Engl J Med. 2008;358(11):1129–36.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Hoshi S, Nomoto K, Kuromitsu J, Tomari S, Nagata M. High glucose induced VEGF expression via PKC and ERK in glomerular podocytes. Biochem Biophys Res Commun. 2002;290(1):177–84.

    Article  PubMed  CAS  Google Scholar 

  94. Quaggin SE. DGKE and atypical HUS. Nat Genet. 2013;45(5):475–6.

    Article  PubMed  CAS  Google Scholar 

  95. Delvaeye M, Noris M, De Vriese A, Esmon CT, Esmon NL, Ferrell G, et al. Thrombomodulin mutations in atypical hemolytic-uremic syndrome. N Engl J Med. 2009;361(4):345–57.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Esmon C. Do-all receptor takes on coagulation, inflammation. Nat Med. 2005;11(5):475–7.

    Article  PubMed  CAS  Google Scholar 

  97. George JN. How I treat patients with thrombotic thrombocytopenic purpura: 2010. Blood. 2010;116(20):4060–9.

    Article  PubMed  CAS  Google Scholar 

  98. Scully M, Hunt BJ, Benjamin S, Liesner R, Rose P, Peyvandi F, et al. Guidelines on the diagnosis and management of thrombotic thrombocytopenic purpura and other thrombotic microangiopathies. Br J Haematol. 2012;158(3):323–35.

    Article  PubMed  Google Scholar 

  99. Kremer Hovinga JA, Vesely SK, Terrell DR, Lammle B, George JN. Survival and relapse in patients with thrombotic thrombocytopenic purpura. Blood. 2010;115(8):1500–11; quiz 662

    Article  PubMed  Google Scholar 

  100. Joly BS, Stepanian A, Leblanc T, Hajage D, Chambost H, Harambat J, et al. Child-onset and adolescent-onset acquired thrombotic thrombocytopenic purpura with severe ADAMTS13 deficiency: a cohort study of the French national registry for thrombotic microangiopathy. Lancet Haematol. 2016;3(11):e537–e46.

    Article  PubMed  Google Scholar 

  101. Schiff DE, Roberts WD, Willert J, Tsai HM. Thrombocytopenia and severe hyperbilirubinemia in the neonatal period secondary to congenital thrombotic thrombocytopenic purpura and ADAMTS13 deficiency. J Pediatr Hematol Oncol. 2004;26(8):535–8.

    Article  PubMed  Google Scholar 

  102. Kalish Y, Rottenstreich A, Rund D, Hochberg-Klein S. Atypical presentations of thrombotic thrombocytopenic purpura: a diagnostic role for ADAMTS13. J Thromb Thrombolysis. 2016;42(2):155–60.

    Article  PubMed  CAS  Google Scholar 

  103. Swisher KK, Doan JT, Vesely SK, Kwaan HC, Kim B, Lammle B, et al. Pancreatitis preceding acute episodes of thrombotic thrombocytopenic purpura-hemolytic uremic syndrome: report of five patients with a systematic review of published reports. Haematologica. 2007;92(7):936–43.

    Article  PubMed  CAS  Google Scholar 

  104. Hughes C, McEwan JR, Longair I, Hughes S, Cohen H, Machin S, et al. Cardiac involvement in acute thrombotic thrombocytopenic purpura: association with troponin T and IgG antibodies to ADAMTS 13. J Thromb Haemost. 2009;7(4):529–36.

    Article  PubMed  CAS  Google Scholar 

  105. James TN, Monto RW. Pathology of the cardiac conduction system in thrombotic thrombocytopenic purpura. Ann Intern Med. 1966;65(1):37–43.

    Article  PubMed  CAS  Google Scholar 

  106. Ridolfi RL, Hutchins GM, Bell WR. The heart and cardiac conduction system in thrombotic thrombocytopenic purpura. A clinicopathologic study of 17 autopsied patients. Ann Intern Med. 1979;91(3):357–63.

    Article  PubMed  CAS  Google Scholar 

  107. Bell MD, Barnhart JS Jr, Martin JM. Thrombotic thrombocytopenic purpura causing sudden, unexpected death—a series of eight patients. J Forensic Sci. 1990;35(3):601–13.

    Article  PubMed  CAS  Google Scholar 

  108. Nichols L, Berg A, Rollins-Raval MA, Raval JS. Cardiac injury is a common postmortem finding in thrombotic thrombocytopenic purpura patients: is empiric cardiac monitoring and protection needed? Ther Apher Dial. 2015;19(1):87–92.

    Article  PubMed  Google Scholar 

  109. Balasubramaniyam N, Kolte D, Palaniswamy C, Yalamanchili K, Aronow WS, McClung JA, et al. Predictors of in-hospital mortality and acute myocardial infarction in thrombotic thrombocytopenic purpura. Am J Med. 2013;126(11):1016.e1–7.

    Article  Google Scholar 

  110. Nokes T, George JN, Vesely SK, Awab A. Pulmonary involvement in patients with thrombotic thrombocytopenic purpura. Eur J Haematol. 2014;92(2):156–63.

    Article  PubMed  CAS  Google Scholar 

  111. Gasparri ML, Bellati F, Brunelli R, Perrone G, Pecorini F, Papadia A, et al. Thrombotic thrombocytopenic purpura during pregnancy versus imitator of preeclampsia. Transfusion. 2015;55(10):2516–8.

    Article  PubMed  CAS  Google Scholar 

  112. Scully M, Thomas M, Underwood M, Watson H, Langley K, Camilleri RS, et al. Thrombotic thrombocytopenic purpura and pregnancy: presentation, management, and subsequent pregnancy outcomes. Blood. 2014;124(2):211–9.

    Article  PubMed  CAS  Google Scholar 

  113. Martin JN Jr, Bailey AP, Rehberg JF, Owens MT, Keiser SD, May WL. Thrombotic thrombocytopenic purpura in 166 pregnancies: 1955-2006. Am J Obstet Gynecol. 2008;199(2):98–104.

    Article  PubMed  Google Scholar 

  114. Burns ER, Lou Y, Pathak A. Morphologic diagnosis of thrombotic thrombocytopenic purpura. Am J Hematol. 2004;75(1):18–21.

    Article  PubMed  Google Scholar 

  115. Horton TM, Stone JD, Yee D, Dreyer Z, Moake JL, Mahoney DH. Case series of thrombotic thrombocytopenic purpura in children and adolescents. J Pediatr Hematol Oncol. 2003;25(4):336–9.

    Article  PubMed  Google Scholar 

  116. George JN. Measuring ADAMTS13 activity in patients with suspected thrombotic thrombocytopenic purpura: when, how, and why? Transfusion. 2015;55(1):11–3.

    Article  PubMed  PubMed Central  Google Scholar 

  117. Mannucci PM, Karimi M, Mosalaei A, Canciani MT, Peyvandi F. Patients with localized and disseminated tumors have reduced but measurable levels of ADAMTS-13 (von Willebrand factor cleaving protease). Haematologica. 2003;88(4):454–8.

    PubMed  Google Scholar 

  118. Bohm M, Gerlach R, Beecken WD, Scheuer T, Stier-Bruck I, Scharrer I. ADAMTS-13 activity in patients with brain and prostate tumors is mildly reduced, but not correlated to stage of malignancy and metastasis. Thromb Res. 2003;111(1–2):33–7.

    Article  PubMed  CAS  Google Scholar 

  119. Nguyen TC, Liu A, Liu L, Ball C, Choi H, May WS, et al. Acquired ADAMTS-13 deficiency in pediatric patients with severe sepsis. Haematologica. 2007;92(1):121–4.

    Article  PubMed  CAS  Google Scholar 

  120. Ono T, Mimuro J, Madoiwa S, Soejima K, Kashiwakura Y, Ishiwata A, et al. Severe secondary deficiency of von Willebrand factor-cleaving protease (ADAMTS13) in patients with sepsis-induced disseminated intravascular coagulation: its correlation with development of renal failure. Blood. 2006;107(2):528–34.

    Article  PubMed  CAS  Google Scholar 

  121. Lattuada A, Rossi E, Calzarossa C, Candolfi R, Mannucci PM. Mild to moderate reduction of a von Willebrand factor cleaving protease (ADAMTS-13) in pregnant women with HELLP microangiopathic syndrome. Haematologica. 2003;88(9):1029–34.

    PubMed  CAS  Google Scholar 

  122. Shah N, Rutherford C, Matevosyan K, Shen YM, Sarode R. Role of ADAMTS13 in the management of thrombotic microangiopathies including thrombotic thrombocytopenic purpura (TTP). Br J Haematol. 2013;163(4):514–9.

    Article  PubMed  CAS  Google Scholar 

  123. Tsai HM. Untying the knot of thrombotic thrombocytopenic purpura and atypical hemolytic uremic syndrome. Am J Med. 2013;126(3):200–9.

    Article  PubMed  Google Scholar 

  124. Burrus TM, Wijdicks EF, Rabinstein AA. Brain lesions are most often reversible in acute thrombotic thrombocytopenic purpura. Neurology. 2009;73(1):66–70.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clay Cohen MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cohen, C. (2018). Background and Presentation of Thrombotic Thrombocytopenic Purpura. In: Despotovic, J. (eds) Immune Hematology. Springer, Cham. https://doi.org/10.1007/978-3-319-73269-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-73269-5_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-73268-8

  • Online ISBN: 978-3-319-73269-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics