Skip to main content

Polymer-Derived Ceramics and Their Space Applications

  • Living reference work entry
  • Latest version View entry history
  • First Online:
Handbook of Advanced Ceramics and Composites

Abstract

Inorganic and organometallic polymers capable of giving high ceramic residue (more than 50 wt%) on heat treatment in an inert atmosphere are called “preceramic polymers.” As they are polymeric in nature, processing techniques used for conventional polymer processing can be easily adopted. They can be applied as coating, cast into film and drawn into fiber and then converted into corresponding ceramic material. Amorphous materials that are thermally stable to very high temperatures with compositions not obtainable with common synthetic methods can be obtained from preceramic polymers. Kinetic stabilization of less stable phases, adaptability of various fabrication capabilities of polymer process engineering, formation of nanoceramics of desired composition, pressureless sintering, and machinability are the main advantages of obtaining ceramics from polymeric precursors.

Polymer-derived ceramics find applications as oxidation resistant high temperature ceramic materials in the form of fiber, coatings and adhesives, and matrix of ceramic matrix composites for use by aerospace, nuclear, and defense establishments. In addition, they are also being investigated for end-use in biomedical devices, drug delivery systems, water remediation, energy storage devices, microelectronics, and nanosensors.

The present chapter deals with synthesis, characterization, and ceramic conversion of silicon-based preceramic polymers, and ceramics from carbonaceous polymers, and their possible space applications. In view of the voluminous literature, equal emphasis could not be given to many of the developments in the area of preceramic polymers and the discussion is confined to relevant systems which have the scope for space applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

3-APTES:

3-Aminopropyltriethoxysilane

ABSE:

Amino-bis(silylethane)

AFCOP:

Active Filler Controlled Polymer Pyrolysis

AO:

Atomic Oxygen

APMDEOS:

3-Aminopropylmethyldiethoxysilane

BCTS:

Boron-Modified CTS

BLS:

Boundary Layer Splitter

BMG:

Methyl and Glycidoxy Group Containing Poly(borosiloxane)

BMV:

Methyl and Vinyl Group Containing Poly(borosiloxane)

BN:

Boron Nitride

BP:

Poly(phenylborosiloxane)

BPV:

Phenyl and Vinyl Group Containing Poly(borosiloxane)

BSAS:

Barium-Strontium-Aluminosilicate

CMC:

Ceramics Matrix Composite

CNT:

Carbon Nano Tube

CTE:

Coefficient of Thermal Expansion

CTS:

1,3,5-Trimethyl-1′,3′,5′-trivinylcyclotrisilazane

CVD:

Chemical Vapor Deposition

CVI:

Chemical Vapor Infiltration

DMDCS:

Dimethyldichlorosilane

DPDCS:

Diphenyldichlorosilane

EBC:

Environmental Barrier Coating

EC:

Eddy Current

FESEM:

Field Emission Scanning Electron Microscopy

FM:

Fiber to Matrix

GPTMOS:

Glycidoxypropyltrimethoxysilane

HDA:

High Density Ablative

HFH:

Heat Flux History

HRTEM:

High Resolution Transition Electron Microscopy

ILSS:

Interlaminar Shear Strength

IMI:

Internal Multiscreen Insulation

KHS:

Kinetic Heat Simulation

LAM:

Liquid Apogee Motor

LEO:

Low Earth Orbit

LSI:

Liquid Silicon Infiltration

MAS-NMR:

Magic Angle Spinning-Nuclear Magnetic Resonance

MAX Phase:

In MAX phase M is an early transition metal, A is an A-group element, and X is either carbon and/or nitrogen

MEMS:

Micro-Electromechanical Systems

MTEOS:

Methyltriethoxysilane

MTMOS:

Methyltrimethoxysilane

MVDCS:

Methylvinyldichlorosilane

MWCNT:

Multi Wall Carbon Nano Tube

NMR:

Nuclear Magnetic Resonance

PBDPS:

Polyborodiphenylsiloxane

PBS:

Polyborosiloxane

PCS:

Polycarbosilane

PDC:

Polymer-Derived Ceramic

PHPS:

Perhydridopolysilazane

PIP:

Polymer Infiltration and Pyrolysis

PSH:

Polysilahydrocarbon

PTEOS:

Phenyltriethoxysilane

PTMOS:

Phenyltrimethoxysilane

PVD:

Physical Vapor Deposition

RLV-TD:

Reusable Launch Vehicle-Technology Demonstrator

RMI:

Reactive Melt Infiltration

SEM:

Scanning Electron Microscopy

SWLE:

Side Wall Leading Edge

TBC:

Thermal Barrier Coating

TEM:

Transmitting Electron Microscopy

TEOS:

Tetraethoxysilane

THF:

Tetrahydrofuran

TMOS:

Tetramethoxysilane

TPhBS:

Titanophenylborosiloxane

TPS:

Thermal Protection System

UHTC:

Ultra High Temperature Ceramic

VTEOS:

Vinyltriethoxysilane

VTMEOS:

Vinyltris(2-methoxyethoxy)silane

WLE:

Wing Leading Edge

XRD:

X-Ray Diffraction

ZBS:

Zirconoborosiloxane

ZPhBS:

Zirconophenylborosiloxane

ZTBS:

Zirconotitanoborosiloxane

References

  1. Rosso M (2006) Ceramic and metal matrix composites: routes and properties. J Mater Process Technol 175:364–375

    CAS  Google Scholar 

  2. Guire ED (2013) Ceramic engineering in aerospace. J Am Ceram Soc. http://ceramics.org/learn-about-ceramics/ceramic-engineering-in-aerospace. Accessed 30 June 2018

  3. Chantrell PG, Popper P (1965) Inorganic polymers and ceramics. In: Popper P (ed) Special ceramics 1964. Academic, New York, pp 87–103

    Google Scholar 

  4. Verbeek W (1973) Production of shaped articles of homogeneous mixtures of silicon carbide and nitride. US Patent 3,853,567

    Google Scholar 

  5. Yajima S, Hayashi J, Omori M et al (1976) Development of a silicon carbide fibre with high tensile strength. Nature 261:683–685

    CAS  Google Scholar 

  6. Bill J, Aldinger F (1999) Polymer-derived covalent ceramics. In: Bill J, Wakai F, Aldinger F (eds) Precursor-derived ceramics. Wiley-VCH, Weinheim, pp 33–51

    Google Scholar 

  7. Colombo P, Mera G, Riedel R et al (2010) Polymer-derived ceramics: 40 years of research and innovation in advanced ceramics. J Am Ceram Soc 93:1805–1837

    CAS  Google Scholar 

  8. Colombo P, Riedel R, Soraru GD et al (2010) Polymer derived ceramics: from nano-structure to applications. Destech Publications, Lancaster

    Google Scholar 

  9. Emanuel I, Mera G, Riedel R (2014) Polymer-derived ceramics (PDCs): materials design towards applications at ultrahigh-temperatures and in extreme environments. In: Nanotechnology: concepts, methodologies, tools, and applications. IGI Global, pp 1108–1139

    Google Scholar 

  10. Konegger T, Torrey J, Flores O et al (2014) Ceramics for sustainable energy technologies with a focus on polymer-derived ceramics. In: Novel combustion concepts for sustainable energy development. Springer India, New Delhi, pp 501–533

    Google Scholar 

  11. Low I-M, Sakka Y, Hu CF (2013) MAX phases and ultra-high temperature ceramics for extreme environments. In: Johnston (ed) Polymer derived ceramics. Engineering Science Reference, Hershey, pp 203–245

    Google Scholar 

  12. Mera G, Gallei M, Bernard S et al (2015) Ceramic nanocomposites from tailor-made preceramic polymers. Nanomaterials 5:468–540

    CAS  Google Scholar 

  13. Lu K, Erb D (2018) Polymer derived silicon oxycarbide-based coatings. Int Mater Rev 63:139–161

    CAS  Google Scholar 

  14. BCC Research Staff (2018) Polymer-derived ceramics: global markets through 2022. In: Staff Rep. AVM161A, BCC Res. https://www.bccresearch.com/market-research/advanced-materials/polymer-derived-ceramics-market-report-avm161a.html. Accessed 30 June 2018

  15. Yamamura T, Ishikawa T, Shibuya M et al (1988) Development of a new continuous Si-Ti-C-O fibre using an organometallic polymer precursor. J Mater Sci 23:2589–2594

    CAS  Google Scholar 

  16. Suzuki K, Kumagawa K, Kamiyama T et al (2002) Characterization of the medium-range structure of Si-Al-C-O, Si-Zr-C-O and Si-Al-C tyrannofibers by small angle X-ray scattering. J Mater Sci 37:949–953

    CAS  Google Scholar 

  17. Qian X, Zhou Q, Ni LZ (2015) Preceramic polymer as precursor for near-stoichiometric silicon carbon with high ceramic yield. J Appl Polym Sci 132(4):7–13

    Google Scholar 

  18. Zhong X, Pei X, Miao Y et al (2017) Accelerating the crosslinking process of hyper branched polycarbosilane by UV irradiation. J Eur Ceram Soc 37(10):3263–3270

    CAS  Google Scholar 

  19. Hong J, Cho KY, Shin DG et al (2015) Room temperature reaction of polycarbosilane with iodine under different atmospheres for polymer-derived silicon carbide fibres. RSC Adv 5(102):83847–83856

    CAS  Google Scholar 

  20. Tian Y, Ge M, Zhang W et al (2015) Metallocene catalytic insertion polymerization of 1-silene to polycarbosilanes. Sci Rep 5(1):16274

    CAS  Google Scholar 

  21. Vijay VV, Nair SG, Sreejith KJ et al (2016) Synthesis, ceramic conversion and microstructure analysis of zirconium modified polycarbosilane. J Inorg Organomet Polym 26:302–311

    CAS  Google Scholar 

  22. Swaminathan B (2012) Studies on silicon containing inorganic and organometallic polymers. PhD thesis, University of Kerala, Thiruvananthapuram

    Google Scholar 

  23. Ly HQ, Taylor R, Day RJ et al (2001) Conversion of polycarbosilane (PCS) to SiC-based ceramic. Part 1. Characterisation of PCS and curing products. J Mater Sci 36(16):4037–4043

    CAS  Google Scholar 

  24. Ly HQ, Taylor R, Day RJ et al (2001) Conversion of polycarbosilane (PCS) to SiC-based ceramic. Part 2. Pyrolysis. J Mater Sci 36(16):4045–4057

    CAS  Google Scholar 

  25. Lu Y, Chen F, An P et al (2016) Polymer precursor synthesis of TaC–SiC ultra high temperature ceramic nanocomposites. RSC Adv 6(91):88770–88776

    CAS  Google Scholar 

  26. Amoros P, Beltran D, Guillem C et al (2002) Synthesis and characterization of SiC/MC/C ceramics (M = Ti, Zr, Hf) starting from totally non-oxidic precursors. Chem Mater 14:1585–1590

    CAS  Google Scholar 

  27. West R, David LD, Djurovich PI et al (1981) Phenylmethylpolysilane: formable silane copolymers with potential semiconducting properties. J Am Chem Soc 103:7352–7355

    CAS  Google Scholar 

  28. Schilling CL Jr (1986) Polymeric routes to silicon carbide. Brit Polym J 18:355–358

    CAS  Google Scholar 

  29. West R (1986) The polysilane high polymers. J Organomet Chem 300:327–346

    CAS  Google Scholar 

  30. Rama Rao M, Packirisamy S, Ravindran PV et al (1992) Synthesis and characterization of poly(tetramethyldisilylene-co-styrene). Macromolecules 25:5165–5170

    Google Scholar 

  31. Packirisamy S, Ambadas G, Rama Rao M et al (2003) 29Si-NMR spectral studies of polydisilahydrocarbons. Eur Polym J 39:1077

    CAS  Google Scholar 

  32. Ambadas G, Packirisamy S, Radhakrishnan TS et al (2004) Synthesis, characterization and thermal properties of poly(methylvinylsilylene-co-styrene). J Appl Polym Sci 91:3774

    CAS  Google Scholar 

  33. Devapal D, Packirisamy S, Ambadas G et al (2004) Thermal degradation kinetics of poly(methylvinylsilylene-co-styrene). Thermochim Acta 409:151

    CAS  Google Scholar 

  34. Ambadas G (2000) Studies on polysilahydrocarbons and boron and silicon containing preceramic polymers. PhD thesis, University of Kerala, Thiruvananthapuram

    Google Scholar 

  35. Mark JE, Allcock HR, West R (2005) Inorganic polymers, 2nd edn. Oxford University Press, New York

    Google Scholar 

  36. Abe Y, Gunji T (2004) Oligo- and polysiloxanes. Prog Polym Sci 29:149–182

    CAS  Google Scholar 

  37. Baney RH, Itoh M, Sakakibara A et al (1995) Silsesquioxanes. Chem Rev 95:1409–1430

    CAS  Google Scholar 

  38. Stabler C, Ionescu E, Graczyk-Zajac M et al (2018) Silicon oxycarbide glasses and glass-ceramics: “all-rounder” materials for advanced structural and functional applications. J Am Ceram Soc 101:4817–4856

    CAS  Google Scholar 

  39. Soraru GD, Dallapiccola E, Dandrea G (1996) Mechanical Characterization of sol–gel-derived silicon oxycarbide glasses. J Am Ceram Soc 79:2074–2080

    CAS  Google Scholar 

  40. Melcher R, Cromme P, Scheffler M et al (2003) Centrifugal casting of thin-walled ceramic tubes from preceramic polymers. J Am Ceram Soc 86:1211–1213

    CAS  Google Scholar 

  41. Brequel H, Parmentier J, Walter S et al (2004) Systematic structural characterization of the high-temperature behavior of nearly stoichiometric silicon oxycarbide glasses. Chem Mater 16:2585–2598

    CAS  Google Scholar 

  42. Kleebe HJ, Blum JD (2008) SiOC ceramic with high excess free carbon. J Eur Ceram Soc 28:1037–1042

    CAS  Google Scholar 

  43. Saha A, Raj R (2006) A model for nano domains in polymer-derived SiCO. J Am Ceram Soc 89(7):2188–2195

    CAS  Google Scholar 

  44. Saha A, Raj R (2007) Crystallization maps for SiCO amorphous ceramics. J Am Ceram Soc 90(2):578–583

    CAS  Google Scholar 

  45. Papendorf B, Ionescu E, Kleebe HJ et al (2012) High-temperature creep behavior of dense SiOC-based ceramic nanocomposites: microstructural and phase composition effects. J Am Ceram Soc 96(1):272–280

    Google Scholar 

  46. Wang F, Apple T, Gill W (2001) Thermal redistribution reactions of Blackglas ceramic. J Appl Polym Sci 81:143–152

    CAS  Google Scholar 

  47. Noll W (2012) Chapter 7. In: Chemistry and technology of silicones. Elsevier, New York, pp 332–339

    Google Scholar 

  48. Yajima S, Okamura K, Hayashi J et al (1977) Pyrolysis of a polyborodiphenylsiloxane. Nature 266:521–522

    CAS  Google Scholar 

  49. Kasgoz A, Misono T, Abe Y (1994) Preparation and properties of polyborosiloxanes as precursors for borosilicate formation of SiO2–B2O3 gel fibers and oxides by the sol-gel method using tetraacetoxysilane and boron tri-n-butoxide. J Polym Sci A Polym Chem 32(6):1049–1056

    CAS  Google Scholar 

  50. Kasgoz A, Kuramata M, Abe Y (1999) Preparation and properties of borosilicate gels by the reaction of tetraacetoxysilane with boron tri-n-butoxide. J Mater Sci 34(24):6137–6141

    CAS  Google Scholar 

  51. Yajima S, Okamura K, Hayashi J et al (1978) Development of high tensile strength silicon carbide fibre using an organosilicon polymer precursor. Nature 273:525–527

    CAS  Google Scholar 

  52. Yajima S, Shishido T, Hamano M (1977) SiC and Si3N4 sintered bodies with new borodiphenylsiloxane polymers as binder. Nature 266:522–524

    CAS  Google Scholar 

  53. Hoshii S, Kojima A, Otani S (1996) Mechanical properties and oxidation resistivity of carbon fiber/ceramic composites prepared from borosiloxane. J Mater Res 11(10):2536–2540

    CAS  Google Scholar 

  54. Abe Y, Gunji T, Kimata Y et al (1990) Preparation of polymetalloxanes as a precursor for oxide ceramics. J Non-Cryst Solids 121(1–3):21–25

    CAS  Google Scholar 

  55. Irwin AD, Holmgren JS, Jonas J (1988) Solid state 29Si and 11B NMR studies of sol-gel derived borosilicates. J Non-Cryst Solids 101(2–3):249–254

    CAS  Google Scholar 

  56. Soraru GD, Dallabona N, Gervais C et al (1999) Organically modified SiO2−B2O3 gels displaying a high content of borosiloxane (B−O−Si) bonds. Chem Mater 11(4):910–919

    CAS  Google Scholar 

  57. Zha C, Atkins GR, Masters AF (1998) Preparation and spectroscopy of anhydrous borosilicate sols and their application to thin films. J Non-Cryst Solids 242(1):63–67

    CAS  Google Scholar 

  58. Soraru GD, Babonneau F, Gervais C et al (2000) Hybrid RSiO1.5/B2O3 gels from modified silicon alkoxides and boric acid. J Sol-Gel Sci Technol 18(1):11–19

    CAS  Google Scholar 

  59. Ambadas G, Packirisamy S, Ninan KN (2002) Synthesis, characterization and thermal properties of boron and silicon containing preceramic oligomers. J Mater Sci Lett 21:1003–1005

    CAS  Google Scholar 

  60. Devapal D (2007) Studies on inorganic and organometallic polymers. PhD thesis, Mahatma Gandhi University, Kottayam

    Google Scholar 

  61. Prabhakaran PV (2008) Studies on non-oxide ceramics derived from polymers and their applications. PhD thesis, University of Kerala, Thiruvananthapuram

    Google Scholar 

  62. Sreejith KJ (2010) Polymer derived ceramics and their high temperature applications. PhD thesis, University of Kerala, Thiruvananthapuram

    Google Scholar 

  63. Devapal D, Packirisamy S, Sreejith KJ et al (2010) Synthesis, characterization and ceramic conversion studies of borosiloxane oligomers from phenyltrialkoxysilanes. J Inorg Organomet Polym 20:666–674

    CAS  Google Scholar 

  64. Sreejith KJ, Prabhakaran PV, Laly KP et al (2016) Vinyl-functionalized poly(borosiloxane) as precursor for SiC/SiBOC nanocomposite. Ceram Int 42:15285–15293

    CAS  Google Scholar 

  65. Devapal D, Sreejith KJ, Swaminathan B et al (2020) Influence of heat treatment temperature on the microstructure evolution of poly(vinylborosiloxane) derived ceramics. J Inorg Organomet Polym. https://doi.org/10.1007/s10904-020-01457-1

  66. Devapal D, Packirisamy S, Prabhakaran PV et al (2016) Process for solventless synthesis of resinous borosiloxane oligomer precursors for ceramics. Indian Patent 277874

    Google Scholar 

  67. Schiavon MA, Armelin NA, Yoshida I (2008) Novel poly(borosiloxane) precursors to amorphous SiBCO ceramics. Mater Chem Phys 112:1047–1054

    CAS  Google Scholar 

  68. Rubinsztajn S (2014) New facile process for synthesis of borosiloxane resins. J Inorg Organomet Polym Mater 24(6):1092–1095

    CAS  Google Scholar 

  69. Schiavon MA, Gervais C, Babonneau F et al (2004) Crystallization behavior of novel silicon boron oxycarbide glasses. J Am Ceram Soc 87(2):203–208

    CAS  Google Scholar 

  70. Sasikala TS, Thomas D, Devapal D (2016) Studies on evolution of nano SiC ceramics from allylborosiloxane. Ceram Int 41(1):1618–1626

    Google Scholar 

  71. Sasikala TS, Devapal D (2015) Studies on high temperature evolution of polymer derived nano SiC ceramics. Mater Sci Forum 830–831:493–497

    Google Scholar 

  72. Parmentier J, Soraru GD, Banonneau F (2001) Influence of the microstructure on the high temperature behavior of gel-derived SiOC glasses. J Eur Ceram Soc 21:101–108

    Google Scholar 

  73. Zhang X, Liu C, Hong C et al (2015) Sol-gel-derived SiBOC ceramics with highly graphitized free carbon. Ceram Int 41:15292–15296

    CAS  Google Scholar 

  74. Struchkov YT, Lindeman SV (1995) Structures of Polymetalloorganosiloxanolates – a novel class of organosilicon metal complexes. J Organomet Chem 488:9–14

    CAS  Google Scholar 

  75. Gunji T, Sopyan IIS, Abe Y (1994) Synthesis of polytitanosiloxanes and their transformation to SiO2–TiO2 ceramic fibers. J Polym Sci A Polym Chem 32:3133–3139

    CAS  Google Scholar 

  76. Dire S, Ceccato R, Babonneau F (2005) Structural and microstructural evolution during pyrolysis of hybrid polydimethylsiloxane-titania nanocomposites. J Sol-Gel Sci Technol 34:53–62

    CAS  Google Scholar 

  77. Liu C, Pan R, Hong C et al (2016) Effects of Zr on the precursor architecture and high-temperature nanostructure evolution of SiOC polymer derived ceramics. J Eur Ceram Soc 36:395–402

    CAS  Google Scholar 

  78. Ionescu E, Linck C, Fasel C et al (2010) Polymer derived SiOC/ZrO2 ceramic nanocomposites with excellent high-temperature stability. J Am Ceram Soc 93:241–250

    CAS  Google Scholar 

  79. Umicevic AB, Cekic BD, Cavor JNB et al (2015) Evolution of the local structure at Hf sites in SiHfOC upon ceramization of a hafnium-alkoxide-modified polyselsesqui-oxane: a perturbed angular correlation study. J Eur Ceram Soc 35:29–35

    CAS  Google Scholar 

  80. Su D, Yan X, Liu N et al (2016) Preparation and characterization of continuous SiZrOC fibers by polyvinyl pyrrolidone-assisted sol-gel process. J Mater Sci 51:1418–1427

    CAS  Google Scholar 

  81. Yan X, Su D, Duan H et al (2015) Preparation of SiOC/HfO2 fibers from silicon alkoxides and tetrachloride hafnium by a sol-gel process. Mater Lett 148:196–199

    CAS  Google Scholar 

  82. Kamal A, Rajasekhar BV, Painuly A et al (2019) A novel precursor for the synthesis of mixed non-oxide ultra high temperature ceramics. J Inorg Organomet Polym 30:1578–1588

    Google Scholar 

  83. Zhang Z, Xu S, Huang J et al (2020) Straight forward synthesis and molecular structure optimization of novel SiZrBOC ceramic precursor via sol-gel and solvothermal approach. Ceram Int:46:3866–46:3874

    Google Scholar 

  84. Seyferth D, Wiseman GH, Prud’homme C (1983) A liquid silazane precursor to silicon nitride. J Am Ceram Soc 66(1):C-13–C-14

    CAS  Google Scholar 

  85. Birot M, Pilot J-P, Dunogues J (1995) Comprehensive chemistry of polycarbosilanes, polysilazanes, and polycarbosilazanes as precursors of ceramics. Chem Rev 95:1443–1477

    CAS  Google Scholar 

  86. Lukacs A III (2007) Polysilazane precursors to advanced ceramics. Am Ceram Soc Bull 86:9301–9306

    Google Scholar 

  87. Weinmann M, Ionescu E, Riedel R et al (2013) Precursor-derived ceramics. In: Handbook of advanced ceramics: materials, applications, processing, and properties. Academic/Elsevier, pp 1025–1101

    Google Scholar 

  88. Wang C, Song N, Ni L et al (2016) Synthesis, thermal properties, and ceramization of a novel ethynylaniline-terminated polysilazane. High Perform Polym 28:359–367

    CAS  Google Scholar 

  89. Jun L, YuLin Q, Ping Z et al (2017) Synthesis of SiC ceramics from polysilazane by laser pyrolysis. Surf Coat Technol 321:491–495

    Google Scholar 

  90. Sun Y, Li Y, Su D et al (2015) Preparation and characterization of high temperature SiCN/ZrB2 ceramic composite. Ceram Int 41(3):3947–3951

    CAS  Google Scholar 

  91. Viard A, Miele P, Bernard S (2016) Review on polymer-derived ceramics route toward SiCN and SiBCN fibers: from chemistry of polycarbosilazanes to the design and characterization of ceramic fibers. J Ceram Soc Jpn 124(10):967–980

    CAS  Google Scholar 

  92. Niebylski LM (1990) Preceramic compositions and ceramic products. US Patent 4,910,173

    Google Scholar 

  93. Su K, Remsen EE, Zank GA et al (1993) Synthesis, characterization, and ceramic conversion reactions of borazine-modified hydridopolysilazanes: new polymeric precursors to silicon nitride carbide boride (SiNCB) ceramic composites. Chem Mater 5:547–556

    CAS  Google Scholar 

  94. Wideman T, Cortz E, Remsen EE et al (1998) Reactions of monofunctional boranes with hydridopolysilazane: synthesis, characterization, and ceramic conversion reactions of new processible precursors to SiNCB ceramic materials. Chem Mater 10:2218–2230

    Google Scholar 

  95. Weinmann M (1999) High temperature stable ceramics from inorganic polymers. In: Bill J, Wakai F, Aldinger F (eds) Precursor-derived ceramics. Wiley-VCH, Weinheim, pp 83–92

    Google Scholar 

  96. Weinmann M, Horz M, Berger F et al (2002) Dehydrocoupling of tris(hydridosilylethyl)boranes and cyanamide: a novel access to boron-containing polysilylcarbodiimides. J Organomet Chem 659:29–42

    CAS  Google Scholar 

  97. Sarkar S, Gan Z, An L et al (2011) Structural evolution of polymer-derived amorphous SiBCN ceramics at high temperature. J Phys Chem C 115:24993–25000

    CAS  Google Scholar 

  98. Gao Y, Mera G, Nguyen H et al (2012) Processing route dramatically influencing the nanostructure of carbon-rich SiCN and SiBCN polymer-derived ceramics. Part I: low temperature thermal transformation. J Euro Ceram Soc 32:1857–1866

    CAS  Google Scholar 

  99. Muller A, Peng J, Seifert HS et al (2002) Si-B-C-N ceramic precursors derived from dichlorodivinylsilane and chlorotrivinylsilane. 2. Ceramization of polymers and high-temperature behavior of ceramic materials. Chem Mater 14:3406–3412

    Google Scholar 

  100. Yu Z, Zhou C, Li R et al (2012) Synthesis and ceramic conversion of a novel processible polyboronsilazane precursor to SiBCN ceramic. Ceram Int 38:4635–4643

    CAS  Google Scholar 

  101. Singh G, Bhandavat R (2016) Boron-modified silazanes for synthesis of SiBNC ceramics. US Patent 9,453,111

    Google Scholar 

  102. Bhandavat R (2013) Molecular precursor derived SiBCN/CNT and SiOC/CNT composite nanowires for energy based applications. PhD thesis, Kansas State University, Manhattan, Kansas

    Google Scholar 

  103. Zeng YC, Chun XF, Yong CS et al (2004) Synthesis of polyborosilazane and its utilization as a precursor to boron nitride. J Appl Polym Sci 94:105109

    Google Scholar 

  104. Schiavon MA, Soraru GD, Valeria I et al (2004) Poly(borosilazanes) as precursors of SiBCN glasses: synthesis and high temperature properties. J Non-Cryst Solids 348:156–161

    CAS  Google Scholar 

  105. Ganesh Babu T, Devasia R (2019) Simple and low cost synthetic route for SiBCN ceramic powder from a boron modified cyclotrisilazane. J Am Ceram Soc 102:476–489

    Google Scholar 

  106. Kousaalya AB, Kumar R, Packirisamy S (2013) Characterization of free carbon in the as-thermolyzed Si–B–C–N ceramic from a polyorganoborosilazane precursor. J Adv Ceram 2(4):325–332

    CAS  Google Scholar 

  107. Wang X, Wang H, Wang JS et al (2018) Synthesis, characterization and ceramic conversion of a liquid polymeric precursor to SiBCN ceramic via borazine-modified polymethylsilane. J Mater Sci 53:11242–11252

    CAS  Google Scholar 

  108. Gerstel P, Muller A, Bill J et al (2003) Synthesis and high-temperature behavior of Si/B/C/N precursor-derived ceramics without “free carbon”. Chem Mater 15:4980–4986

    CAS  Google Scholar 

  109. Liu F, Kong J, Luo C et al (2015) High temperature self-healing SiBCN ceramics derived from hyperbranched polyborosilazanes. Adv Compos Hybrid Mater 1:506–517

    Google Scholar 

  110. Bechelany MC, Salameh C, Viard A et al (2015) Preparation of polymer-derived Si-B-C-N monoliths by spark plasma sintering technique. J Eur Ceram Soc 35:1361–1374

    CAS  Google Scholar 

  111. Lee J, Butt DP, Baney RH et al (2005) Synthesis and pyrolysis of novel polysilazane to SiBCN ceramic. J Non-Cryst Solids 351:2995–3005

    CAS  Google Scholar 

  112. Zhao H, Chen L, Luan X et al (2016) Synthesis, pyrolysis of a novel liquid SiBCN ceramic precursor and its application in ceramic matrix composites. J Eur Ceram Soc 37:1321–1329

    Google Scholar 

  113. Zhang C, Liu Y, Han K et al (2018) Effect of boron content on structure and high thermal stability of Polyborosilazane precursor. Adv Funct Mater 87:795–803

    Google Scholar 

  114. Luan X, Zhang Q, Yu R et al (2019) Polyborosilazane-derived high temperature resistant SiBCNO. Adv Eng Mater 1801295:1–7

    Google Scholar 

  115. Tamayo A, Alonso R, Maza M et al (2016) Combined pyrolysis-ammonolysis treatment to retain C during nitridation of SiBOCN ceramics. J Ceram Soc Jpn 124(10):996–1002

    CAS  Google Scholar 

  116. Liu Y, Peng S, Cui Y et al (2017) Fabrication and properties of precursor-derived SiBN ternary ceramic fibers. Mater Design 128:150–156

    CAS  Google Scholar 

  117. Liu Y, Chen K, Peng S et al (2019) Synthesis and pyrolysis mechanism of a novel polymeric precursor for SiBN ternary ceramic fibers. Ceram Int 45:20172–20177

    CAS  Google Scholar 

  118. Ionescu E, Bernard S, Lucas R et al (2019) Polymer-derived ultra-high temperature ceramics (UHTCs) and related materials. Adv Eng Mater 21:1900269

    Google Scholar 

  119. Dhamne A, Xu W, Fookes BG et al (2005) Polymer–ceramic conversion of liquid polyaluminasilazanes for SiAlCN ceramics. J Am Ceram Soc 88:2415–2419

    CAS  Google Scholar 

  120. Wang Y, Fan Y, Zhang L et al (2006) Polymer-derived SiAlCN ceramics resist oxidation at 1400°C. Scr Mater 55:295–297

    CAS  Google Scholar 

  121. Shi L, Zhao H, Tang C (2009) Purity of SiC powders fabricated by coat-mix. Int J Miner Metall Mater 16:230–235

    CAS  Google Scholar 

  122. Qian JM, Jin ZH (2006) Preparation and characterization of porous, biomorphic SiC ceramic with hybrid pore structure. J Eur Ceram Soc 26:1311–1316

    CAS  Google Scholar 

  123. Jung YS, Kwon OJ, Oh SM (2002) Formation of silica-coated carbon powder and conversion to spherical β-silicon carbide by carbothermal reduction. J Am Ceram Soc 85:2134–2136

    CAS  Google Scholar 

  124. Li W, Huang Q, Guo H et al (2018) Green synthesis and photoluminescence property of β-SiC nanowires from rice husk silica and phenolic resin. Ceram Int 44:4500–4503

    CAS  Google Scholar 

  125. Prabhakaran PV, Sreejith KJ, Swaminathan B et al (2009) Silicon carbide wires of nano to sub-micron size from phenol-furfuraldehyde resin. J Mater Sci 44:528–533

    CAS  Google Scholar 

  126. Ma CCM, Tai NH, Chang WC et al (1996) Microstructure and oxidation resistance of SiC coated carbon-carbon composites via pressure less reaction sintering. J Mater Sci 31:649–654

    CAS  Google Scholar 

  127. Yu X, Ding S, Meng Z (2008) Aerosol assisted synthesis of silica/phenolic resin composite mesoporous hollow spheres. Colloid Polym Sci 286:1361–1368

    CAS  Google Scholar 

  128. Hasegawa I (1996) New potentially economic process for fabricating nonoxide ceramic fibers. Mater Tech 11:14–15

    Google Scholar 

  129. Song N, Zhang H, Liu H et al (2017) Effects of SiC whiskers on the mechanical properties and microstructure of SiC ceramics by reactive sintering. Ceram Int 43:6786–6790

    CAS  Google Scholar 

  130. Zhang W, Wang H, Jin Z (2005) Gel casting and properties of porous silicon carbide/silicon nitride composite ceramics. Mater Lett 59:250–256

    CAS  Google Scholar 

  131. Nishimura T, Ishihara S, Yoshioka Y et al (2009) Synthesis of non-oxide ceramic fine-powders from organic precursors. Key Eng Mater 403:269–272

    CAS  Google Scholar 

  132. Hasegawa I, Nakamura T, Kajiwara M (1996) Synthesis of continuous silicon carbide-titanium carbide hybrid fibers through sol-gel processing. Mater Res Bull 31:869–875

    CAS  Google Scholar 

  133. Hwang GC, Matsushita J (2008) Fabrication and properties of SiB6-B4C with phenolic resin as a carbon source. J Mater Sci Technol 24:102–104

    CAS  Google Scholar 

  134. Lee JS, Lee SH, Nishimura T et al (2009) Hexagonal plate-like ternary carbide particulates synthesized by a carbothermal reduction process: processing parameters and synthesis mechanism. J Am Ceram Soc 92:1030–1035

    CAS  Google Scholar 

  135. Cheng Z, Foroughi P, Behrens A (2017) Synthesis of nanocrystalline TaC powders via single-step high temperature spray pyrolysis from solution precursors. Ceram Int 43:3431–3434

    CAS  Google Scholar 

  136. Li X, Yuan G, Zhou Y et al (2018) Electromagnetic properties of porous Si3N4 ceramics with gradient distributions of SiC and pores fabricated by directional in-situ nitridation reaction. Ceram Int 44:1176–1181

    Google Scholar 

  137. Ganesh Babu T, Devasia R (2016) Boron-modified phenol formaldehyde resin-based self-healing matrix for Cf/SiBOC composites. Adv Appl Ceram 115(8):457–469

    CAS  Google Scholar 

  138. Ganesh Babu T, Devasia R (2016) Boron modified phenol formaldehyde derived Cf/SiBOC composites with improved mechanical strength for high temperature applications. J Inorg Organomet Polym Mater 26(4):764–772

    CAS  Google Scholar 

  139. Li F, Huang X, Zhang G (2017) Chapter 3. Preparation of ultra-high temperature ceramics-based materials by sol-gel routes. In: Usha C (ed) Recent applications in sol-gel synthesis. InTech Publisher, Croatia

    Google Scholar 

  140. Nitin C, Devapal D, Prabhakaran PV (2019) Synthesis of zirconium diboride based ultra high temperature ceramics via preceramic route. Ceram Int 45:25092–25096

    Google Scholar 

  141. Greil P, Seibold M (1991) Modelling of dimensional changes during polymer-ceramic conversion for bulk component fabrication. J Mater Sci 27:1053–1060

    Google Scholar 

  142. Erny T, Seibold M, Jarchow O et al (1993) Microstructure development of oxycarbide composites during active-filler-controlled polymer pyrolysis. J Am Ceram Soc 76:206–213

    Google Scholar 

  143. Greil P (1995) Active-filler-controlled pyrolysis of preceramic polymers. J Am Ceram Soc 78:835–848

    CAS  Google Scholar 

  144. Greil P (2012) Advancements in polymer-filler derived ceramics. J Korean Ceram Soc 49:279–286

    CAS  Google Scholar 

  145. Vijay V, Bhuvaneswari S, Biju VM et al (2016) Influence of titanium silicide active filler on the microstructure evolution of borosiloxane-derived Si-B-O-C ceramics. J Ceram Sci Technol 07(01):97–106

    Google Scholar 

  146. Vijay V, Biju VM, Devasia R (2016) Active filler controlled polymer pyrolysis – a promising route for the fabrication of advanced ceramics. Ceram Int 42(14):15592–15596

    CAS  Google Scholar 

  147. Chawla KK (2003) Ceramic matrix composites, 2nd edn. Kluwer Academic Publishers, Norwell

    Google Scholar 

  148. Marshall DB, Cox BN (2008) Integral textile ceramic structures. Annu Rev Mater Sci 38:425–443

    CAS  Google Scholar 

  149. Glass D (2008) Ceramic matrix composite (CMC) thermal protection systems (TPS) and hot structures for hypersonic vehicles. In: 15th AIAA international space planes and hypersonic systems and technologies conference, p 2682

    Google Scholar 

  150. Ohnabe H, Masaki S, Onozuka M et al (1999) Potential application of ceramic matrix composites to aero-engine components. Compos Part A Appl Sci Manuf 30:489–496

    Google Scholar 

  151. Zhang QM (2011) Research on ceramic matrix composites (CMC) for aerospace applications. Adv Mater Res 284–286:324–329

    Google Scholar 

  152. Scigliano R, Belardo M, De Stefano FM et al (2016) Thermo-mechanical numerical model set-up and validation approach for a CMC control surface for re-entry vehicles. AIAA. https://doi.org/10.2514/6.2016-5626

  153. Belardo M, De M, Fumo S et al (2017) Development of an Italian technology for CMC control surface for re-entry applications. In: 7th European conference for aeronautics and space sciences. https://doi.org/10.13009/EUCASS2017-428

  154. Zuber C, Reimer T, Stubicar K et al (2010) Manufacturing of the CMC nose cap for the EXPERT spacecraft. Ceram Eng Sci Proc 31(8):59–72

    CAS  Google Scholar 

  155. Harnisch B, Kunkel B, Deyerler M et al (1998) Ultra-lightweight C/SiC mirrors and structures. ESA Bull 95(8):148–152

    Google Scholar 

  156. Vaidyaraman S, Purdy M, Walker T et al (2006) C/SiC material evaluation for aircraft brake applications. In: High temperature ceramic matrix composites. Wiley-VCH, Weinheim, pp 802–808

    Google Scholar 

  157. Li G, Zhang C, Hu H et al (2012) Preparation and mechanical properties of C/SiC nuts and bolts. Mater Sci Eng A 547:1–5

    CAS  Google Scholar 

  158. Schmidt S, Beyer S, Knabe H et al (2004) Advanced ceramic matrix composite materials for current and future propulsion technology applications. Acta Astronaut 55:409–420

    Google Scholar 

  159. Balat-Pichelin M, Charpentier L, Panerai F et al (2015) Passive/active oxidation transition for CMC structural materials designed for the IXV vehicle re-entry phase. J Eur Ceram Soc 35:487–502

    CAS  Google Scholar 

  160. Franklin KM, Weinberg DJ, Tran TT (2003) Large thermal protection system panel. US Patent 6,505,794

    Google Scholar 

  161. Scotti S, Clay C, Rezin M (2003) Structures and materials technologies for extreme environments applied to reusable launch vehicles. In: AIAA international air and space symposium and exposition: the next 100 years. https://doi.org/10.2514/6.2003-2697

  162. Pichon T, Barreteau R, Soyris P et al (2009) CMC thermal protection system for future reusable launch vehicles: generic shingle technological maturation and tests. Acta Astronaut 65:165–176

    CAS  Google Scholar 

  163. Olufsen F, Orbekk E (2017) Application of CMC materials in rocket propulsion. In: M Singh, T Ohji, S Dong, D Koch, et al (eds) Advances in high temperature ceramic matrix composites and materials for sustainable development. Wiley, Hoboken, pp 367–374

    Google Scholar 

  164. Christin F (2002) Design, fabrication, and application of thermostructural composites (TSC) like C/C, C/SiC, and SiC/SiC composites. Adv Eng Mater 4(12):903–912

    CAS  Google Scholar 

  165. Krenkel W (2004) Carbon fiber reinforced CMC for high-performance structures. Int J Appl Ceram Technol 1(2):188–200

    CAS  Google Scholar 

  166. Buffenoir F, Zeppa C, Pichon T et al (2016) Development and flight qualification of the C–SiC thermal protection systems for the IXV. Acta Astronaut 124:85–89

    CAS  Google Scholar 

  167. Liu C, Chen J, Han H et al (2004) A long duration and high reliability liquid apogee engine for satellites. Acta Astronaut 55:401–408

    Google Scholar 

  168. Schmidt S, Beyer S, Immich H et al (2005) Ceramic matrix composites: a challenge in space-propulsion technology applications. Int J Appl Ceram Technol 2(2):85–96

    CAS  Google Scholar 

  169. Keller K, Pfeiffer E, Handrick K et al (2006) Advanced high temperature insulations. In: 5th European workshop on thermal protection systems and hot structures, Noordwijk

    Google Scholar 

  170. Ortona A, Pusterla S, Gianella S (2011) An integrated assembly method of sandwich structured ceramic matrix composites. J Eur Ceram Soc 31:1821–1826

    CAS  Google Scholar 

  171. Naslain R (1998) The design of the fibre-matrix interfacial zone in ceramic matrix composites. Compos Part A Appl Sci Manuf 29(9–10):1145–1155

    Google Scholar 

  172. Yin J, Lee SH, Feng L et al (2015) The effects of SiC precursors on the microstructures and mechanical properties of SiCf/SiC composites prepared via polymer impregnation and pyrolysis process. Ceram Int 41:4145–4153

    CAS  Google Scholar 

  173. Lii DF, Huang JL, Tsui LJ et al (2002) Formation of BN films on carbon fibers by dip-coating. Surf Coat Technol 150:269–276

    CAS  Google Scholar 

  174. Einset EO, Patibandla NB, Luthra KL (1994) Processing conditions for boron nitride coatings in fiber bundles via chemical vapor deposition. J Am Ceram Soc 77:3081–3086

    CAS  Google Scholar 

  175. Hackl G, Gerhard H, Popovska N (2006) Coating of carbon short fibers with thin ceramic layers by chemical vapor deposition. Thin Solid Films 513:217–222

    CAS  Google Scholar 

  176. Naslain R (2004) Design, preparation and properties of non-oxide CMCs for application in engines and nuclear reactors: an overview. Compos Sci Technol 64(2):155–170

    CAS  Google Scholar 

  177. Kopeliovich D (2014) Advances in the manufacture of ceramic matrix composites using infiltration techniques (Chapter 5). In: Low IM (ed) Advances in ceramic matrix composites. Woodhead Publishing, Cambridge, UK, pp 79–108

    Google Scholar 

  178. Larson NM, Zok FW (2018) In-situ 3D visualization of composite microstructure during polymer-to-ceramic conversion. Acta Mater 144:579–589

    CAS  Google Scholar 

  179. Streckert HH, Sheehan JE, Mazdiyasni K (1991) Method for providing a silicon carbide matrix in carbon-fiber reinforced composites. US Patent 5,067,999

    Google Scholar 

  180. Liu L, Li X, Xing X et al (2008) A modified polymethylsilane as the precursor for ceramic matrix composites. J Organomet Chem 693:917–922

    CAS  Google Scholar 

  181. Kotani M, Kohyama A, Katoh Y (2001) Development of SiC/SiC composites by PIP in combination with RS. J Nucl Mater 289:37–41

    CAS  Google Scholar 

  182. Ly HQ, Taylor R, Day RJ (2001) Carbon fibre-reinforced CMCs by PCS infiltration. J Mater Sci 36:4027–4035

    CAS  Google Scholar 

  183. Suo J, Chen Z, Xiao J et al (2005) Influence of an initial hot-press processing step on the mechanical properties of 3D-C/SiC composites fabricated via PIP. Ceram Int 31:447–452

    CAS  Google Scholar 

  184. Swaminathan B, Painuly A, Manwatkar SK et al (2010) Polymer derived C/C-SiC and C/C-SiBOC ceramics for space applications. In: Krenkel W, Lamon J (eds) High temperature ceramic materials and composites. AVISO VerlagsegesellschaftmbH, Berlin, pp 719–723

    Google Scholar 

  185. He X, Zhang X, Zhang C et al (2001) Microstructures of a carbon fiber-reinforced silicon-carbide composite produced by precursor pyrolysis and hot pressing. Compos Sci Technol 61:117–123

    CAS  Google Scholar 

  186. Kohyama A, Kotani M, Katoh Y et al (2000) High-performance SiC/SiC composites by improved PIP processing with new precursor polymers. J Nucl Mater 283–287:565–569

    Google Scholar 

  187. Wang QK, Hu HF, Zheng WW et al (2007) Preparation and property study of 3D Cf/Si-Ti-C-O composites fabricated with polytitanocarbosilane by PIP process. Key Eng Mater 336–338:1242–1244

    Google Scholar 

  188. Ochiai S, Kimura S, Tanaka H et al (2004) Residual strength of PIP-processed SiC/SiC single-tow minicomposite exposed at high temperatures in air as a function of exposure temperature and time. Compos Part A Appl Sci Manuf 35:41–50

    Google Scholar 

  189. Sreeja R, Swaminathan B, Painuly A et al (2010) Allylhydridopolycarbosilane (AHPCS) as matrix resin for C/SiC ceramic matrix composites. Mater Sci Eng B 168:204–207

    CAS  Google Scholar 

  190. King D, Apostolov Z, Key T et al (2018) Novel processing approach to polymer-derived ceramic matrix composites. Int J Appl Ceram Technol 15:399–408

    CAS  Google Scholar 

  191. Bongio EV, Lewis SL, Welson DR et al (2009) Polymer derived ceramic matrix composites for friction applications. Adv Appl Ceram 108:483–487

    CAS  Google Scholar 

  192. Ajith R (2012) Studies on lightweight ceramics and ceramic matrix composites from polymeric precursors. PhD thesis, University of Kerala

    Google Scholar 

  193. Gadow R, Kern F, Ulutas H (2005) Mechanical properties of ceramic matrix composites with siloxane matrix and liquid phase coated carbon fiber reinforcement. J Eur Ceram Soc 25:221–225

    CAS  Google Scholar 

  194. Suttor D, Erny T, Greil P (1997) Fiber-reinforced ceramic-matrix composites with a Polysiloxane/boron-derived matrix. J Am Ceram Soc 80:1831–1840

    CAS  Google Scholar 

  195. Pina SRO, Pardini LC, Yoshida IVP (2007) Carbon fiber/ceramic matrix composites: processing, oxidation and mechanical properties. J Mater Sci 42:4245–4253

    CAS  Google Scholar 

  196. Liedtke V, Olivares IH, Langer M et al (2007) Sol–gel-based carbon/silicon carbide. J Eur Ceram Soc 27:1267–1272

    CAS  Google Scholar 

  197. Akkas HD, Ovecoglu ML, Tanoglu M (2006) Silicon oxycarbide-based composites produced from pyrolysis of polysiloxanes with active Ti filler. J Eur Ceram Soc 26:3441–3449

    CAS  Google Scholar 

  198. Rocha RM, Cairo C, Graca ML (2006) Formation of carbon fiber-reinforced ceramic matrix composites with polysiloxane/silicon derived matrix. Mater Sci Eng A 437:268–273

    Google Scholar 

  199. Srinivasan K, Tiwari SN (1990) Development of polysilsesquioxane composites. NASA-CR-180263

    Google Scholar 

  200. Yair H, Liedtke V (2003) Sol-gel derived C-SiC composites and protective coatings for sustained durability in the space environment. Int Mater Space Environ 540:67–74

    Google Scholar 

  201. Sreejith KJ, Packirisamy S (2010) Phenyl borosiloxane derived ceramic matrix composites. In: Krenkel W, Lamon J (eds) High temperature ceramic materials and composites. AVISO VerlagsegesellschaftmbH, Berlin, pp 712–718

    Google Scholar 

  202. Vijay V, Siva S, Sreejith KJ et al (2018) Effect of boron inclusion in SiOC polymer derived matrix on the mechanical and oxidation resistance properties of fiber reinforced composites. Mater Chem Phys 205:269–277

    CAS  Google Scholar 

  203. Hoshii S, Kojima A, Ooi H et al (1996) Preparation of CF/ceramic composite using 2.5-dimensionally (quintuple) wove CF cloth. Carbon 34:283–284

    Google Scholar 

  204. Siqueira RL, Yoshida IVP, Pardini LC et al (2007) Poly(borosiloxanes) as precursors for carbon fiber ceramic matrix composites. Mater Res 10:147–151

    CAS  Google Scholar 

  205. Thünemann M, Herzog A, Vogt U et al (2004) Porous SiC-preforms by Intergranular binding with preceramic polymers. Adv Eng Mater 6:167–172

    Google Scholar 

  206. Herzog A, Thünemann M, Vogt U et al (2005) Novel application of ceramic precursors for the fabrication of composites. J Eur Ceram Soc 25:187–192

    CAS  Google Scholar 

  207. Devasia R, Nair SG, Sreejith KJ et al (2018) Fiber-reinforced ceramic matrix composite material with polymer derived interphase coating. Indian Patent 299956

    Google Scholar 

  208. Nair SG, Sreejith KJ, Packirisamy S et al (2018) Polymer derived PyC interphase coating for C/SiBOC composites. Mater Chem Phys 204:179–186

    CAS  Google Scholar 

  209. Sreejith KJ, Rajasekhar BV, Vijay V et al (2018) Polymer-derived Cf/SiBOC ceramic matrix composites and a method of production thereof. Indian Patent Appl. No. 201841020417

    Google Scholar 

  210. Devapal D, Gopakumar MP, Painuly A et al (2014) Development of C/SiBOC ceramic matrix composite from vinylborosiloxane as matrix resin. In: ISAMPE national conference on composites (INCCOM-13), Thiruvananthapuram

    Google Scholar 

  211. Fitzer E, Manocha LM (1998) Applications of carbon/carbon composites. In: Carbon reinforcements and carbon/carbon composites. Springer, Berlin/Heidelberg, pp 310–336

    Google Scholar 

  212. Sheehan JE, Buesking KW, Sullivan BJ (1994) Carbon-carbon composites. Annu Rev Mater Sci 24(1):19–44

    CAS  Google Scholar 

  213. Isola C, Appendino P, Bosco F et al (1998) Protective glass coating for carbon-carbon composites. Carbon 36(7–8):1213–1218

    CAS  Google Scholar 

  214. Fu QG, Li HJ, Shi XH et al (2005) Silicon carbide coating to protect carbon/carbon composites against oxidation. Scr Mater 52(9):923–927

    CAS  Google Scholar 

  215. Carter JA (1996) Oxidation protection for carbon/carbon composites. US Patent 5,536,574

    Google Scholar 

  216. Gray PE (1990) Oxidation protection for carbon/carbon composites. US Patent 4,894,286

    Google Scholar 

  217. Weir RL, Pearsall JA (1990) Glass ceramic precursor compositions containing titanium diboride. US Patent 4,931,413

    Google Scholar 

  218. Chu Y, Li H, Fu Q et al (2012) Oxidation protection of C/C composites with a multilayer coating of SiC and Si+ SiC+ SiC nanowires. Carbon 50(3):1280–1288

    CAS  Google Scholar 

  219. Li J, Luo R, Lin C et al (2007) Oxidation resistance of a gradient self-healing coating for carbon/carbon composites. Carbon 45(13):2471–2478

    CAS  Google Scholar 

  220. Li HJ, Xue H, Wang YJ et al (2007) A MoSi2–SiC–Si oxidation protective coating for carbon/carbon composites. Surf Coat Technol 201(24):9444–9447

    CAS  Google Scholar 

  221. Fu QG, Li HJ, Li KZ et al (2007) A SiC/glass oxidation protective coating for carbon/carbon composites for application at 1173K. Carbon 4(45):892–894

    Google Scholar 

  222. Morimoto T, Ogura Y, Kondo M et al (1995) Multilayer coating for carbon-carbon composites. Carbon 33(4):351–357

    CAS  Google Scholar 

  223. Maclean JP (2004) Analysis of the Columbia shuttle disaster – anatomy of a flawed investigation in a pathological organization. J Sci Explor 18(2):187–215

    Google Scholar 

  224. Li H, Zhang L, Cheng L et al (2009) UV curing behavior of a highly branched polycarbosilane. J Mater Sci 44(4):970–975

    CAS  Google Scholar 

  225. Liu J, Zhang L, Liu Q et al (2010) Polymer-derived SiOC–barium–strontium aluminosilicate coatings as an environmental barrier for C/SiC composites. J Am Ceram Soc 93(12):4148–4152

    CAS  Google Scholar 

  226. Lee KN, Fox DS, Eldridge JI et al (2003) Upper temperature limit of environmental barrier coatings based on mullite and BSAS. J Am Ceram Soc 86(8):1299–1306

    CAS  Google Scholar 

  227. Wang Y, Li H, Zhang L et al (2009) Oxidation behavior of polymer derived SiCO powders. Ceram Int 35(3):1129–1132

    CAS  Google Scholar 

  228. Wang Y, Fei W, An L (2006) Oxidation/corrosion of polymer-derived SiAlCN ceramics in water vapor. J Am Ceram Soc 89(3):1079–1082

    CAS  Google Scholar 

  229. An LN, Wang YG, Bharadwaj L et al (2004) Silicoaluminum carbonitride with anomalously high resistance to oxidation and hot corrosion. Adv Eng Mater 6(5):337–340

    CAS  Google Scholar 

  230. Mucalo MR, Milestone NB, Vickridge IC et al (1994) Preparation of ceramic coatings from pre-ceramic precursors. J Mater Sci 29(17):4487–4499

    CAS  Google Scholar 

  231. Bill J, Heimann D (1996) Polymer-derived ceramic coatings on C/C-SiC composites. J Eur Ceram Soc 16(10):1115–1120

    CAS  Google Scholar 

  232. Bonnetot B, Guilhon F, Viala JC et al (1995) Boron nitride matrixes and coatings obtained from tris (methylamino) borane. Application to the protection of graphite against oxidation. Chem Mater 7(2):299–303

    CAS  Google Scholar 

  233. Paciorek KJ, Masuda SR, Kratzer RH et al (1991) Processable precursor for boron nitride coatings and matrixes. Chem Mater 3(1):88–91

    CAS  Google Scholar 

  234. Niebylski LM (1990) Organoborosilazane. US Patent 4,921,925

    Google Scholar 

  235. Baldus HP, Jansen M, Wagner O (1994) New materials in the system Si-(N, C)-B and their characterization. Key Eng Mater 89:75–80

    Google Scholar 

  236. Wang K, Luo L, Lu Y et al (2015) In-field reparation of the damaged coatings for C/C composites. Ceram Int 41(6):7549–7555

    CAS  Google Scholar 

  237. Manocha LM, Manocha SM (1995) Studies on solution-derived ceramic coatings for oxidation protection of carbon-carbon composites. Carbon 33(4):435–440

    CAS  Google Scholar 

  238. Niu F, Wang Y, Abbas I et al (2017) A MoSi2-SiOC-Si3N4/SiC anti-oxidation coating for C/C composites prepared at relatively low temperature. Ceram Int 43(3):3238–3245

    CAS  Google Scholar 

  239. Schiroky GH (1987) Oxidation behavior of chemically vapor-deposited silicon carbide. Adv Ceram Mater 2(2):137–141

    CAS  Google Scholar 

  240. Jacobson NS, Opila EJ, Lee KN (2001) Oxidation and corrosion of ceramics and ceramic matrix composites. Curr Opin Solid State Mater Sci 5(4):301–309

    CAS  Google Scholar 

  241. Jacobson NS (1993) Corrosion of silicon-based ceramics in combustion environments. J Am Ceram Soc 76(1):3–28

    CAS  Google Scholar 

  242. More KL, Tortorelli PF, Ferber MK et al (2000) Observations of accelerated silicon carbide recession by oxidation at high water-vapor pressures. J Am Ceram Soc 83(1):211–213

    CAS  Google Scholar 

  243. Eaton HE, Linsey GD (2002) Accelerated oxidation of SiC CMCs by water vapor and protection via environmental barrier coating approach. J Eur Ceram Soc 22(14–15):2741–2747

    CAS  Google Scholar 

  244. Liu J, Zhang L, Yang J et al (2012) Fabrication of SiCN–Sc2Si2O7 coatings on C/SiC composites at low temperatures. J Eur Ceram Soc 32(3):705–710

    CAS  Google Scholar 

  245. Riedel R, Bill J, Kienzle A (1996) Boron-modified inorganic polymers – precursors for the synthesis of multicomponent ceramics. Appl Organomet Chem 10(3–4):241–256

    CAS  Google Scholar 

  246. Kobayashi K, Maeda K, Sano H et al (1995) Formation and oxidation resistance of the coating formed on carbon material composed of B4C-SiC powders. Carbon 33(4):397–403

    CAS  Google Scholar 

  247. Devapal D, Gopakumar MP, Prabhakaran PV et al (2018) An oxidation resistance coating composition and a method of preparation thereof. Indian Patent Appl No. 201841020187, 30 May 2018

    Google Scholar 

  248. Packirisamy S (2018) Polymer-derived ceramics for space applications. Feature article in souvenir of international conference on recent trends in materials science and technology, October 2018, India

    Google Scholar 

  249. Thirunavukkarasu S, Rao BPC, Jayakumar T et al (2011) Eddy current methodology for nondestructive assessment of thickness of silicon carbide coating on carbon-carbon composites. Aerosp Sci Technol 63(3):223–229

    Google Scholar 

  250. https://www.newscientist.com/article/2089757-indias-reusable-space-plane-takes-its-first-test-flight/. Accessed 27 Aug 2018

  251. Kors D (1990) Design considerations for combined air breathing-rocket propulsion systems. In 2nd International aerospace planes conference, Orlando, 1990-5216

    Google Scholar 

  252. https://www.isro.gov.in/launchers/isro%E2%80%99s-scramjet-engine-technology-demonstrator-successfully-flight-tested. Accessed 2 Sept 2018

  253. Vijay V, Devasia R (2013) Process document on silicon carbide based oxidation protection coating on C/C composite for SRE-II Project Technical Report, PCM/ASCG/CMPD/QC/01/2013

    Google Scholar 

  254. Hald H (2003) Operational limits for reusable space transportation systems due to physical boundaries of C/SiC materials. Aerosp Sci Technol 7(7):551–559

    Google Scholar 

  255. Sreeja R, Sebastain TV, Prabhakaran PV et al (2018) Precursor based ceramic coating and adhesive compositions for high temperature applications. Indian Patent 304496

    Google Scholar 

  256. Vanitha R (2014) Thermal response evaluation of SiC coated C/C composite for RLV nose cap and ceramic matrix composite for RLV wing leading edge. Technical Report No. AHTD/PN/38/2014. Vikram Sarabhai Space Centre, Thiruvananthapuram

    Google Scholar 

  257. Swadyba L, Moskal G, Mendala B et al (2007) Characterisation of APS TBC system during isothermal oxidation at 1100°C. Arch Mater Sci Eng 758:758

    Google Scholar 

  258. Mercier D, Gauntt BD, Brochu M (2011) Thermal stability and oxidation behavior of nanostructured NiCoCrAlY coatings. Surf Coat Technol 205(17–18):4162–4168

    CAS  Google Scholar 

  259. Simendinger III WH (2005) Thermal barrier composition. US Patent Appl No. US2005/0106381 A1

    Google Scholar 

  260. Torrey JD, Bordia RK, Henager CH et al (2006) Composite polymer derived ceramic system for oxidizing environments. J Mater Sci 41(14):4617–4622

    CAS  Google Scholar 

  261. Torrey JD, Bordia RK (2008) Mechanical properties of polymer-derived ceramic composite coatings on steel. J Eur Ceram Soc 28(1):253–257

    CAS  Google Scholar 

  262. Kappa M, Kebianyor A, Scheffler M (2010) A two-component preceramic polymer system for structured coatings on metals. Thin Solid Films 519(1):301–305

    CAS  Google Scholar 

  263. Barroso G, Li Q, Bordia RK et al (2019) Polymeric and ceramic silicon-based coatings – a review. J Mater Chem A 7:1936–1963

    CAS  Google Scholar 

  264. Günthner M, Kraus T, Dierdorf A et al (2009) Advanced coatings on the basis of Si(C)N precursors for protection of steel against oxidation. J Eur Ceram Soc 29(10):2061–2068

    Google Scholar 

  265. Günthner M, Schütz A, Glatzel U et al (2011) High performance environmental barrier coatings, part I: passive filler loaded SiCN system for steel. J Eur Ceram Soc 31(15):3003–3010

    Google Scholar 

  266. Wang K, Günthner M, Motz G et al (2011) High performance environmental barrier coatings, part II: active filler loaded SiOC system for superalloys. J Eur Ceram Soc 31(15):3011–3020

    CAS  Google Scholar 

  267. Parchoviansky M, Petrikova I, Barroso GS et al (2018) Corrosion and oxidation behavior of polymer derived ceramic coatings with passive Glass fillers on AISI 441 stainless steel. Ceramics-Silikáty 62(2):146–157

    CAS  Google Scholar 

  268. Riffard F, Joannet E, Buscail H et al (2017) Beneficial effect of a pre-ceramic polymer coating on the protection at 900°C of a commercial AISI 304 stainless steel. Oxid Met 88(1–2):211–220

    CAS  Google Scholar 

  269. Nguyen MD, Bang JW, Bin AS et al (2017) Novel polymer-derived ceramic environmental barrier coating system for carbon steel in oxidizing environments. J Eur Ceram Soc 37(5):2001–2010

    CAS  Google Scholar 

  270. Smokovych I, Hasemann G, Krüger M et al (2017) Polymer derived oxidation barrier coatings for Mo-Si-B alloys. J Eur Ceram Soc 37(15):4559–4565

    CAS  Google Scholar 

  271. Soechting FO (1995) A design perspective on thermal barrier coatings. In: Thermal barrier coating workshop, NASA Conference Publication 3312, Cleveland, pp 1–15

    Google Scholar 

  272. Ranjbar-Far M, Absi J, Shahidi S et al (2011) Impact of the non-homogenous temperature distribution and the coatings process modeling on the thermal barrier coatings system. Mater Des 32(2):728–735

    CAS  Google Scholar 

  273. Miller RA (1995) Thermal barrier coatings for aircraft engines – history and directions. In: Thermal barrier coating workshop, NASA CP 3312, p 17

    Google Scholar 

  274. Stiger MJ, Yanar NM, Topping MG et al (1999) Thermal barrier coatings for the 21st century. Z Met 90(12):1069–1078

    CAS  Google Scholar 

  275. Klemens PG (1993) Thermal conductivity of zirconia. In: Wills KE, Dinwiddie RB, Graves RS (eds) Thermal conductivity, vol 23. Technomics, Lancaster, p 209

    Google Scholar 

  276. Bose S (2017) High temperature coatings. Butterworth-Heinemann, Elsevier Publishers, Oxford, UK, p 199

    Google Scholar 

  277. Padture NP, Gell M, Jordan EH (2002) Thermal barrier coatings for gas-turbine engine applications. Science 296(5566):280–284

    CAS  Google Scholar 

  278. Xu H, Guo H (eds) (2011) Thermal barrier coatings. Elsevier, Oxford, UK

    Google Scholar 

  279. Devapal D, Sebastain TV, Prabhakaran PV et al (2012) Thermal barrier coating on metallic substrates by preceramic route. Paper presented in the international symposium on metals and materials, Thiruvananthapuram

    Google Scholar 

  280. Devapal D, Sebastian TV, Kirubaharan K et al (2019) Process for multilayer thermal barrier coating for protection of metallic substrates from extreme temperature conditions. Indian Patent 322018

    Google Scholar 

  281. Teichman A, Stein BA (1988) NASA/SDIO space environmental effects on materials workshop, Hampton. Part 2, NASA-L-16575-PT-2

    Google Scholar 

  282. De Groh KK, Banks BA, Sharon KR et al (2018) Chapter 28, Degradation of spacecraft materials. In: Kutz M (ed) Handbook of environmental degradation of materials, 3rd edn. Elsevier, Cambridge, MA, pp 601–645

    Google Scholar 

  283. Reddy MR (1995) Effect of low earth orbit atomic oxygen on spacecraft materials. J Mater Sci 30:281–307

    CAS  Google Scholar 

  284. Packirisamy S, Schwam D, Litt MH (1995) Atomic oxygen resistant coatings for low earth orbit space structures. J Mater Sci 30:308–320

    CAS  Google Scholar 

  285. Arjun GN, Lincy TL, Sajitha TS et al (2015) Atomic oxygen resistant polysiloxane coatings for low earth orbit space structures. Mater Sci Forum 830:699–702

    Google Scholar 

  286. Xu M, Zhao Y, Zhang X et al (2019) Highly homogeneous polysiloxane flexible coating for low earth orbital spacecraft with ultra-efficient atomic oxygen resistance and self-healing behaviour. ACS Appl Polym Mater. https://doi.org/10.1021/acsapm.9b00671

  287. Wang X, Li Y, Qian Y et al (2018) Mechanically robust atomic oxygen-resistant coatings capable of autonomously healing damage in low earth orbit space environment. Adv Mater 1803854:1–7

    Google Scholar 

  288. Devapal D, Packirisamy S, Korulla RM (2004) Atomic oxygen resistant coating from poly (tetramethyldisilylene-co-styrene). J Appl Polym Sci 94(6):2368–2375

    CAS  Google Scholar 

  289. Devapal D, Packirisamy S, Nair CPR (2006) Phosphazene-based polymers as atomic oxygen resistant materials. J Mater Sci 41:5764–5766

    CAS  Google Scholar 

  290. Wu B, Zhang Y, Yang D et al (2019) Self-healing anti-atomic-oxygen phosphorus-containing polyimide film via molecular level incorporation of nanocage trisilanolphenyl POSS: preparation and characterization. Polymers 11(1013):1–19

    Google Scholar 

  291. Maldar NN, Medhi M, Packirisamy S (2017) Aromatic bisetherimides having pendant diphenyl phosphine oxide and a process for preparing the same. Indian Patent 279815

    Google Scholar 

  292. Maldar NN, Medhi M, Packirisamy S (2016) Aromatic diamines with pendant styryl phosphine oxide group and a process for preparing thesame. Indian Patent 274744

    Google Scholar 

  293. Chunbo W, Haifu J, Dongbo T et al (2019) Atomic oxygen effects on polymers containing silicon or phosphorus: mass loss, erosion yield, and surface morphology. High Perform Polym 31(8):969–976

    Google Scholar 

  294. Song G, Li X, Jiang Q et al (2015) A novel structural polyimide material with synergistic phosphorus and POSS for atomic oxygen resistance. RSC Adv 5(16):11980–11988

    CAS  Google Scholar 

  295. Packirisamy S, Abraham G, Ramaswamy R et al (2008) A process for producing siloxane polymers having atomic oxygen resistance and a method of producing articles coated therewith. Indian Patent 216622

    Google Scholar 

  296. Packirisamy S, Abraham G, Ramaswamy R et al (2008) A process for the synthesis of siloxane-imide-epoxy resins. Indian Patent 216620

    Google Scholar 

  297. Schwam D, Litt MH (1996) Evaluation of atomic oxygen resistant coatings for space structures. Adv Perform Mater 3(2):153–169

    CAS  Google Scholar 

  298. Packirisamy S (1996) Decaborane(14)-based polymers. Prog Polym Sci 21(4):707–773

    CAS  Google Scholar 

  299. Hu L, Li M, Xu C et al (2009) A polysilazane coating protecting polyimide from atomic oxygen and vacuum ultraviolet radiation erosion. Surf Coat Technol 203(22):3338–3343

    CAS  Google Scholar 

  300. Hu L, Li M, Xu C et al (2011) Perhydropolysilazane derived silica coating protecting Kapton from atomic oxygen attack. Thin Solid Films 520:1063

    CAS  Google Scholar 

  301. Chang YC, Liu TZ, Zhang H et al (2014) Protection of kapton from atomic oxygen erosion using a polysilazane coating. Appl Mech Mater 651:65–68

    Google Scholar 

  302. Hanson W, Fernie J (1998) Ceramic joining – an overview. Mater World 6(9):524–536

    Google Scholar 

  303. Singh M (2011) Ceramic integration technologies for aerospace and energy systems: technical challenges and opportunities. NASA Technical Report No. 20110012028

    Google Scholar 

  304. Kim JJ, Park JW, Eagar TW (2003) Interfacial microstructure of partial transient liquid phase bonded Si3N4-to-Inconel 718 joints. Mater Sci Eng A 344(1–2):240–244

    Google Scholar 

  305. Morrissey SR (2005) New materials for aging space shuttle. Chem Eng News 83(44):26–29

    Google Scholar 

  306. Riedell JA, Easler TE (2009) Ceramic material suitable for repair of a space vehicle component in a microgravity and vacuum environment, method of making same, and method of repairing a space vehicle component. US Patent 7,628,878 B2

    Google Scholar 

  307. Lyndon B (2013) Ceramic adhesive and methods for on-orbit repair of re-entry vehicles. NASA Technical Briefs, 20130013565, May 2013, p 15

    Google Scholar 

  308. Singh M (2007) In space repair and refurbishment of thermal protection systems structures of reusable launch vehicles. NASA Technical Report No. 20070031665

    Google Scholar 

  309. Lewinsohn CA, Colombo P, Reimanis I et al (2001) Stresses occurring during joining of ceramics using preceramic polymers. J Am Ceram Soc 84(10):2240–2244

    CAS  Google Scholar 

  310. Colombo P, Donato A, Riccardi B et al (2002) Joining SiC-based ceramics and composites with pre-ceramic polymers. Ceram Trans 144:323–334

    CAS  Google Scholar 

  311. Bernardo E, Parcianello G, Colombo P et al (2012) SiAlON ceramics from preceramic polymers and nano-sized fillers: application in ceramic joining. J Eur Ceram Soc 32:1329–1335

    CAS  Google Scholar 

  312. Luan X, Chang S, Riedel R et al (2018) An air stable high temperature adhesive from modified SiBCN precursor synthesized via polymer-derived-ceramic route. Ceram Int 44(7):8476–8483

    CAS  Google Scholar 

  313. Luan X, Chang S, Yu R et al (2019) Effect of PSO and TiB2 content on the high temperature adhesion strength of SiBCNO ceramic. Ceram Int 45(7):9515–9521

    CAS  Google Scholar 

  314. Wang X, Wang J, Wang H (2019) Preparation, structural evolution, and performance of heat-resistant organosilicon polymer adhesives for joining SiC ceramics. J Adhes 95:85–102

    CAS  Google Scholar 

  315. Zhong Z, Xu H, Zhang X et al (2018) Bonding ZrB2-SiC-G ceramics using modified organic adhesive for engineering applications at ultra high temperatures in air. Ceram Int 44(4):3810–3815

    CAS  Google Scholar 

  316. Wang X, Wang J, Wang H (2015) Joining of SiC ceramics via a novel liquid preceramic polymer (V-PMS). Ceram Int 41:7283–7288

    CAS  Google Scholar 

  317. Wang X, Shi J, Wang H (2019) Preparation, properties, and structural evolution of a novel polyborosilazane adhesive, temperature-resistant to 1600°C for joining SiC ceramics. J Alloys Compd 772:912–919

    CAS  Google Scholar 

  318. Davidovits J (1991) Geopolymers: inorganic polymeric new materials. J Therm Anal Calorim 37(8):1633–1656

    CAS  Google Scholar 

  319. Sreeja R, Prabhakaran PV, Manwatkar SK et al (2012) Adhesive joining of metal to metal and metal to ceramic by precursor route. Paper presented in the international symposium on metals and materials, Thiruvananthapuram

    Google Scholar 

  320. Scheffler M, Colombo P (eds) (2005) Cellular ceramics: structure, manufacturing, properties and applications. Wiley-VCH, Weinheim

    Google Scholar 

  321. Colombo P, Bernardo E (2008) Cellular structures (Chapter 10). In: Riedel R, Chen I-W (eds) Ceramics science and technology. Structures, vol 1. Wiley-VCH, Weinheim, pp 407–441

    Google Scholar 

  322. Ohji T, Fukushima M (2012) Macro-porous ceramics: processing and properties. Int Mater Rev 57(2):115–131

    CAS  Google Scholar 

  323. André R, Studart W, Urs T (2006) Processing routes to macroporous ceramics: a review. J Am Ceram Soc 89(6):1771–1789

    Google Scholar 

  324. Arpin KA, Hill C, Justin W et al (2007) Ceramic foam processing by the chemical vapor infiltration of a graphite felt with SiC for ceramic composite applications. In: Tandon R (ed) Mechanical properties and performance of engineering ceramics and composites II. Wiley, Hoboken, pp 415–422

    Google Scholar 

  325. Borchardt L, Hoffmann C, Oschatz M et al (2012) Preparation and application of cellular and nanoporous carbides. Chem Soc Rev 41:5053–5067

    CAS  Google Scholar 

  326. Vakifahmetoglu C, Zeydanli D, Colombo P (2016) Porous polymer-derived ceramics. Mater Sci Eng 106:1–30

    Google Scholar 

  327. Colombo P, Bernardo E (2003) Macro- and micro-cellular porous ceramics from preceramic polymers. Compos Sci Technol 63:2353–2359

    CAS  Google Scholar 

  328. Zhang H, D’Angelo Nunes P, Wilhelm M et al (2016) Hierarchically ordered micro/meso/macroporous polymer-derived ceramic monoliths fabricated by freeze-casting. J Eur Ceram Soc 36:51–58

    Google Scholar 

  329. Colombo P (2006) Conventional and novel processing methods for cellular ceramics. Philos Trans A Math Phys Eng Sci 364:109–124

    CAS  Google Scholar 

  330. Jana P, Zera E, Sorarù GD (2017) Processing of preceramic polymer to low density silicon carbide foam. Mater Des 116:278–286

    CAS  Google Scholar 

  331. Mishra MK, Kumar S, Ranjan A et al (2018) Processing, properties and microstructure of SiC foam derived from epoxy-modified polycarbosilane. Ceram Int 44:1859–1867

    CAS  Google Scholar 

  332. Fukushima M, Colombo P (2012) Silicon carbide-based foams from direct blowing of polycarbosilane. J Eur Ceram Soc 32:503–510

    CAS  Google Scholar 

  333. Strachota A, Černý M, Chlup Z et al (2015) Preparation of finely macroporous SiOC foams with high mechanical properties and with hierarchical porosity via pyrolysis of a siloxane/epoxide composite. Ceram Int 41:8402–8410

    CAS  Google Scholar 

  334. Wolff F, Ceron NB, Fey T et al (2012) Extrusion foaming of a preceramic silicone resin with a variety of profiles and morphologies. Adv Eng Mater 14:1110–1115

    CAS  Google Scholar 

  335. Chen H, Parthasarathy TA, Cinibulk MK et al (2014) Processing, characterization, and modeling of room-temperature-vulcanized silicone-derived ceramic foams. J Am Ceram Soc 97:733–741

    CAS  Google Scholar 

  336. Zeschky J, Höfner T, Arnold C et al (2005) Polysilsesquioxane derived ceramic foams with gradient porosity. Acta Mater 53:927–937

    CAS  Google Scholar 

  337. Yuan X, Lü J, Yan X et al (2011) Preparation of ordered mesoporous silicon carbide monoliths via preceramic polymer nanocasting. Microporous Mesoporous Mater 142:754–758

    CAS  Google Scholar 

  338. Eom J-H, Kim Y-W, Park CB et al (2012) Effect of forming methods on porosity and compressive strength of polysiloxane-derived porous silicon carbide ceramics. J Ceram Soc Japan 120:199–203

    CAS  Google Scholar 

  339. Manoj KBV, Zhai W, Eom J-H et al (2011) Processing highly porous SiC ceramics using poly(ether-co-octene) and hollow microsphere templates. J Mater Sci 46:3664–3667

    Google Scholar 

  340. Reschke V, Laskowsky A, Kappa M (2011) Polymer derived ceramic foams with additional strut porosity. Mater Sci 3–4:57–61

    Google Scholar 

  341. Wang J, Oschatz M, Biemelt T et al (2013) Preparation of cubic ordered mesoporous silicon carbide monoliths by pressure assisted preceramic polymer nanocasting. Microporous Mesoporous Mater 168:142–147

    CAS  Google Scholar 

  342. Nangrejo MR, Bao X, Edirisinghe MJ (2000) The structure of ceramic foams produced using polymeric precursors. J Mater Sci Lett 19:787–789

    CAS  Google Scholar 

  343. Sreejith KJ, Fey T, Greil P (2014) Siliconboronoxycarbide (SiBOC) foam from methyl borosiloxane. Ceram Trans 243:47–60

    Google Scholar 

  344. Kim Y-W, Kim S-H, Song I-H et al (2005) Fabrication of open-cell, microcellular silicon carbide ceramics by carbothermal reduction. J Am Ceram Soc 88(10):2949–2951

    CAS  Google Scholar 

  345. Naviroj M, Miller SM, Colombo P et al (2015) Directionally aligned macroporous SiOC via freeze casting of preceramic polymers. J Eur Ceram Soc 35:2225–2232

    CAS  Google Scholar 

  346. Yoon B-H, Lee E-J, Kim H-E et al (2007) Highly aligned porous silicon carbide ceramics by freezing polycarbosilane/camphene solution. J Am Ceram Soc 90:1753–1759

    CAS  Google Scholar 

  347. Zhang H, Lana C, Wilhelm M et al (2017) Macro/mesoporous SiOC ceramics of anisotropic structure for cryogenic engineering. Mater Des 134:207–217

    Google Scholar 

  348. Xue F, Zhou K, Wu N et al (2018) Porous SiC ceramics with dendritic pore structures by freeze casting from chemical cross-linked polycarbosilane. Ceram Int 44:6293–6299

    CAS  Google Scholar 

  349. Assefa D, Zera E, Campostrini R et al (2016) Polymer-derived SiOC aerogel with hierarchical porosity through HF etching. Ceram Int 42:11805–11809

    CAS  Google Scholar 

  350. Pradeep VS, Ayana DG, Graczyk-Zajac M et al (2015) High rate capability of SiOC ceramic aerogels with tailored porosity as anode materials for Li-ion batteries. Electrochim Acta 157:41–45

    CAS  Google Scholar 

  351. https://ultramet.com/propulsion-system-components/liquid-rocket-engines/. Accessed 18 Mar 2019

  352. Kelso S, Goodman B (2006) Foam core enables stiff lightweight mirrors. SPIE News. https://doi.org/10.1117/2.1200607.0258

  353. Williams JL, Lachman IM, Patil MD et al (1994) Cellular ceramic substrates. MRS Proc 368:283–292

    Google Scholar 

  354. Han JH, Hegedus AG, (1992) Method for producing a fiber-reinforced ceramic honeycomb panel. US Patent 5,078,818

    Google Scholar 

  355. Petrisko RA, Stark GL, Petrark DR et al (1998) US Patent 5,851,403

    Google Scholar 

  356. Cagliostro DE, Riccitiello SR (1989) Ceramic honeycomb structures and method thereof. US Patent 4,824,711

    Google Scholar 

  357. Pearson WR, Daws DE (2000) Method of adhering ceramic foams. US Patent 6,099,671

    Google Scholar 

  358. Daryabeigi K, Miller SD, Cunnington GR (2007) NASA Langley Research Center Document ID: 2008001356

    Google Scholar 

  359. Wang Y, Chen Z, Yu S et al (2017) Improved sandwich structured ceramic matrix composites with excellent thermal insulation. Compos Part B 129:180–186

    CAS  Google Scholar 

  360. https://ultramet.com/refractory-open-cell-foams/mirrors/. Accessed 13 Apr 2019

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Packirisamy .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Packirisamy, S., Sreejith, K.J., Devapal, D., Swaminathan, B. (2020). Polymer-Derived Ceramics and Their Space Applications. In: Mahajan, Y., Roy, J. (eds) Handbook of Advanced Ceramics and Composites. Springer, Cham. https://doi.org/10.1007/978-3-319-73255-8_31-2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-73255-8_31-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-73255-8

  • Online ISBN: 978-3-319-73255-8

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Polymer-Derived Ceramics and Their Space Applications
    Published:
    02 July 2020

    DOI: https://doi.org/10.1007/978-3-319-73255-8_31-2

  2. Original

    Polymer-Derived Ceramics and Their Space Applications
    Published:
    19 June 2020

    DOI: https://doi.org/10.1007/978-3-319-73255-8_31-1