Skip to main content

SiC-Based Composites Through Liquid Infiltration Routes

  • Living reference work entry
  • Latest version View entry history
  • First Online:
Handbook of Advanced Ceramics and Composites
  • 347 Accesses

Abstract

Carbon fiber-reinforced silicon carbide matrix composites (called C/SiC or C/C-SiC) represent a relatively new class of structural materials. These composites have emerged as one of the most promising materials for high-temperature applications in defense and aerospace sectors. They are fabricated via chemical vapor infiltration (CVI), polymer impregnation and pyrolysis (PIP), and liquid silicon infiltration (LSI) processing routes. Several new manufacturing processes have been developed during the last few years such as short fiber reinforcements’ based and cheap ceramic precursor polymer based. These composites possess high mass-specific properties, structural and dimensional stability at high temperature, low coefficient of thermal expansion, high thermal conductivity, and reasonable oxidation resistance. These properties have increased the importance of the C/SiC composites and thus make them as most preferred materials for the aerospace, defense, and civil/industrial applications like thrust vectoring control vanes, nozzles, brake disks and pads, clutches, furnace charging devices, etc. This chapter presents the processing and characterization of the C/SiC composite fabricated by liquid infiltration routes, viz., PIP and LSI. Typical properties of the C/SiC composites like mechanical, thermal, and ablative are presented. Few established and potential application of these composites are discussed briefly.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Beyer S, Schmidth S, Maidi F et al (2006) Advanced composite materials for current and future propulsion and industrial applications. Adv Sci Technol 50:178–171

    Article  Google Scholar 

  2. Heidenreich B (2015) C/SiC and C/C-SiC composites, ceramic matrix composites: materials, modeling and technology. In: Bansal NP, Lamon J (eds) Ceramic Matrix Composites: Materials, Modeling and Technology, 1st edn. The American Ceramic Society, Wiley, p 147–216

    Google Scholar 

  3. Kumar S, Shekar KC, Jana B, Manocha LM, Eswara Prasad N (2017) C/C and C/SiC composites for aerospace applications. In: Prasad N, Wanhill R (eds) Aerospace materials and material technologies. Indian Institute of Metals Series. Springer, Singapore, pp 343–369

    Chapter  Google Scholar 

  4. Kumar S, Kumar A, Ramesh Babu M, Raghvendra Rao M (2015) Fabrication and ablation studies of 4D C/SiC composite nozzle under liquid propulsion. Int J Appl Ceram Tech 12(S3):E176–E190

    Article  CAS  Google Scholar 

  5. Kumar S, Kumar A, Sampath K, Bhanu Prasad VV, Chaudhary JC, Gupta AK, Rohini Devi G (2011) Fabrication and erosion studies of C–SiC composite jet vanes in solid rocket motor exhaust. J Eur Ceram Soc 31(13):2425–2431

    Article  CAS  Google Scholar 

  6. Weiß R (2001) Carbon fibre reinforced CMCs: manufacture, properties, oxidation protection. In: Krenkel W, Naslain R, Schneider H (eds) High temperature ceramic matrix composites. Wiley-VCH, Weinheim, pp 440–456

    Google Scholar 

  7. Meinhardt J, Woyke T, Raether F, Kienzle A (2006) Measurement and simulation of the oxidation of carbon fibers and C/SiC ceramic. Adv Sci Technol 45:1489–1494

    Article  CAS  Google Scholar 

  8. Naslain R (2004) Design, preparation and properties of non-oxide CMCs for application in engines and nuclear reactors: an overview. Compos Sci Technol 64:155–170

    Article  CAS  Google Scholar 

  9. Berdoyes M (2006) Snecma propulsion solide advanced technology SRM nozzles. In: History and future, AIAA 2006–4596. California. https://doi.org/10.2514/6.2006-4596

  10. Kumar S, Misra MK, Mondal S, Gupta RK, Mishra R, Ranjan A, Saxena AK (2015) Polycarbosilane based UD C/SiC composites: effect of in-situ grown SiC nano-pins on mechanical properties. Ceram Int 41(10):12849–12860

    Article  CAS  Google Scholar 

  11. Kumar S, Bablu M, Ranjan A, Manocha LM, Eswara PN (2017) Fabrication of 2D C/C-SiC composites using PIP based hybrid process and investigation of mechanical properties degradation under cyclic heating. Ceram Int 43(3):3414–3423

    Article  CAS  Google Scholar 

  12. Kumar S, Bablu M, Janghela S, Misra MK, Mishra R, Ranjan A, Eswara PN (2018) Factorial design, processing, characterization and microstructure analysis of PIP-based C/SiC composites. Bull Mater Sci 41(17). https://doi.org/10.1007/s12034-017-1535-5

  13. Kumar S, Bablu M, Misra MK, Ranjan A, Eswara PN (2017) Fabrication and characterization of PIP based C/SiC composites having improved mechanical properties using high modulus M40J carbon fibre as reinforcement. Ceram Int 43(11):8153–8162

    Article  CAS  Google Scholar 

  14. Savage G (1993) Carbon-carbon composites. SPRINGER-SCIENCE+BUSINESS MEDIA, B.V.; pp 1–385. Springer Netherlands. https://doi.org/10.1007/978-94-011-1586-5

    Book  Google Scholar 

  15. Kumar S, Kumar A, Rohini DG, Gupta AK (2011) Preparation of 3D orthogonal woven C-SiC composite and its characterization for thermo-mechanical properties. Mater Sci Eng A 528:6210–6216

    Article  CAS  Google Scholar 

  16. Kumar S, Kumar A, Shukla A, Rohini DG, Gupta AK (2009) Investigation of thermal expansion of 3D-stitched C–SiC composites. J Eur Ceram Soc 29(13):2849–2855

    Article  CAS  Google Scholar 

  17. Pradere C, Sauder C (2008) Transverse and longitudinal coefficient of thermal expansion of carbon fibers at high temperatures (300–2500 K). Carbon 46:1874–1884

    Article  CAS  Google Scholar 

  18. Kumar S, Kumar A, Shukla A, Rohini DG, Gupta AK (2009) Thermal-diffusivity measurement of 3D-stitched C–SiC composites. J Eur Ceram Soc 29(3):489–495

    Article  CAS  Google Scholar 

  19. Kamiya R, Cheeseman BA, Popper P et al (2000) Some recent advances in the fabrication and design of three dimensional textile preforms: a review. Compos Sci Technol 60:33–47

    Article  Google Scholar 

  20. Mouritz AP, Bannister MK, Falzon PJ et al (1999) Review of applications for advanced three dimensional fiber textile composites. Composites A 30:1445–1461

    Article  Google Scholar 

  21. Kadir B et al (2012) Multiaxis three-dimensional weaving for composites: a review. Text Res J 82(7):725–743

    Google Scholar 

  22. Lee JY, Kang TJ (2005) Thermal conductivity of needle punched preforms made of carbon and OxiPAN fibres. Polym Polym Compos 13(1):83–92

    CAS  Google Scholar 

  23. Evans MJ, Williams KA, Fisher R (1997) Manufacture of carbon fibre preform. US Patent 5599603, 1997

    Google Scholar 

  24. Evans MJ, Williams KA, Fisher R (1996) Ultra-high performance carbon composites. US Patent 5503893, 1996

    Google Scholar 

  25. Naslain R (1998) The design of the fibre-matrix interfacial zone in ceramic matrix composites. Compos 29A:1145–1155

    Article  CAS  Google Scholar 

  26. Kerans RJ, Hay RS, Parthasarathy TA, Cinibulk MK (2002) Interface design for oxidation-resistant ceramic composites. J Am Ceram Soc 85(11):2599–2632

    Article  CAS  Google Scholar 

  27. Naslain R, Dugne O, Guette A, Se’vely J, Robin-Brosse C, Rocher JP, Cotteret J (1991) Boron nitride interphase in ceramic matrix composites. J Am Ceram Soc 74:2482–2488

    Article  CAS  Google Scholar 

  28. Hutchinson JW, Jensen HM (1990) Models of fiber debonding and pullout in brittle composites with friction. Mech Mater, Elsevier 9:139–163

    Article  Google Scholar 

  29. Evans AG, Zok FW, Mackin TJ (1995) High temperature mechanical behavior of ceramic composites. Butterworth-Heinemann, Boston, pp 3–84

    Book  Google Scholar 

  30. Motz G, Schmidt S, Beyer S (2008) The PIP-process: precursor properties and applications in ceramic matrix composites, In: Krenkel W (ed) Ceramic Matrix Composites: Fiber Reinforced Ceramics and their Applications. Wiley-VCH Verlag, Weinheim, p 357–359

    Google Scholar 

  31. Whitmarsh CW, Interrante LV (1992) Carbosilane polymer precursors to silicon carbide ceramics. US Patent 5153295, 1992

    Google Scholar 

  32. Jian K, Chen ZH, Ma QS, Zheng WW (2005) Effects of pyrolysis processes on the microstructures and mechanical properties of Cf/SiC composites using polycarbosilane. Mater Sci Eng A 390:154–158

    Article  CAS  Google Scholar 

  33. Ly H, Taylor R, Day RJ, Heatley F (2001) Conversion of Polycarbosilane (PCS) to SiC-Based Ceramic Part 1. Characterisation of PCS and Curing Products. J Mater Sci 36:4037–4043. https://doi.org/10.1023/A:1017942826657

    Article  CAS  Google Scholar 

  34. Sherwood WJ (2003) CMCs come down to earth. Am Ceram Soc Bull 82(8):25–27

    CAS  Google Scholar 

  35. Rak ZS (2001) A process for Cf/SiC composites using liquid polymer infiltration. J Am Ceram Soc 84:2235–2239

    Article  CAS  Google Scholar 

  36. Mishra MK, Barua SK, Kumar S (2018) Development of PIP based C/SiC UD composites. DRDO-DMSR-IPH-TCR-545-2018

    Google Scholar 

  37. Bablu SK (2018) Development of 2D C/SiC composites through PIP route. DRDO-DMSR-IPH-TCR-546-2018

    Google Scholar 

  38. Njoya D, Hajjaji M (2015) Quantification of the effects of manufacturing factors on ceramic properties using full factorial design. J Asian Ceramic Soc 3(1):32–37

    Article  Google Scholar 

  39. Ma C, Guo L, Li H, Tan W, Duan T, Liu N, Zhang M (2016) Effects of high-temperature annealing on the microstructures and mechanical properties of C/C–ZrC–SiC composites prepared by precursor infiltration and pyrolysis. Mater Des 90:373–378

    Article  CAS  Google Scholar 

  40. Zhao S, Zhou X, Yu J (2014) Effect of heat treatment on the mechanical properties of PIP–SiC/SiC composites fabricated with a consolidation process. Ceram Int 40(3):3879–3885

    Article  CAS  Google Scholar 

  41. Sreeja R, Swaminathan B, Painuly A, Sebastian TV, Packirisamy S (2010) Allylhydridopolycarbosilane (AHPCS) as matrix resin for C/SiC ceramic matrix composites. Mater Sci Eng B 168(1–3):204–220

    Article  CAS  Google Scholar 

  42. Lamouroux F, Bertrand S, Pailler R, Naslain R, Cataldi M (1999) Oxidation-resistant carbon-fiber-reinforced ceramic-matrix composites. Compos Sci Technol 59(7):1073–1085

    Article  CAS  Google Scholar 

  43. Langlais F (2000) In: Kelly A, Zweben C, Warren R (Eds) Comprehensive composite materials, carbon/carbon. Cement and ceramic matrix composites, vol 4. Elsevier, Amsterdam, p 611

    Google Scholar 

  44. Chawla KK (2003) Ceramic matrix composites, 2nd edn. Kluwer Academic Publishers, Boston

    Book  Google Scholar 

  45. Kumar S, Chandra R, Kumar A, Eswara PN, Manocha LM (2015) C/SIC composites for propulsion application. Compos Nanostruct 7:225–230

    CAS  Google Scholar 

  46. Kumar S, Kumar A, Rohini DG, Shukla A, Gupta AK (2009) Capillary infiltration studies of liquids into 3D-stitched C–C preforms: part B: kinetics of silicon infiltration. J Eur Ceram Soc 29(12):2651–2657

    Article  CAS  Google Scholar 

  47. Kumar S, Kumari S, Kumar A, Shukla A, Rohini DG, Gupta AK (2011) Investigation of effect of siliconization conditions on mechanical properties of 3D-stitched C–SiC composites. Mater Sci Eng A 528(3):1016–1022

    Article  CAS  Google Scholar 

  48. Srikanth I, Daniel A, Kumar S, Padmavathi N, Singh V, Ghosal P, Kumar A, Rohini DG (2010) Nano silica modified carbon–phenolic composites for enhanced ablation resistance. Scr Mater 63(2):200–203

    Article  CAS  Google Scholar 

  49. Krenkel W, Heidenreich B, Renz R (2002) C/C-SiC composites for advanced friction systems. Adv Eng Mater 4(7):427–436

    Article  CAS  Google Scholar 

  50. Krenkel W (2004) Carbon fiber reinforced CMC for high performance structures. Int J Appl Ceram Tech 1(2):188–200

    Article  CAS  Google Scholar 

  51. Handbook of Ceramic Composites (2005) In: Bansal NP (Eds) (2005)

    Google Scholar 

  52. Kumar S, Kushwaha J, Mondal S, Kumar A, Jain RK, Rohini DG (2013) Fabrication and ablation testing of 4D C/C composite at 10 MW/m2 heat flux under a plasma arc heater. Mater Sci Eng A 566:102–111

    Article  CAS  Google Scholar 

  53. Chen B, Litong Z, Laifei C, Xingang L (2009) Ablation behavior of a three-dimensional carbon/silicon carbide composite nozzle in an ethanol/oxygen combustion gas generator. Int J Appl Ceram Technol 6(2):182–189

    Article  CAS  Google Scholar 

  54. Fang D, Chen Z, Song Y, Sun Z (2009) Morphology and microstructure of 2.5 dimension C/SiC composites ablated by oxyacetylene torch. Ceram Int 35(3):1249–1253

    Article  CAS  Google Scholar 

  55. Opila EJ, Nguyen QGN (1998) Oxidation of chemically-vapor-deposited silicon carbide in carbon dioxide. J Am Ceram Soc 81(7):1949–1952

    Article  CAS  Google Scholar 

  56. Zhi-Qiao Y, Feng C, Xiang X, Peng X, Hong-Bo Z, Bai-Yun H (2010) Oxidation behavior of CVI, MSI and CVI+MSI C/SiC composites. Trans Nonferrous Met Soc China 20(4):590–596

    Article  CAS  Google Scholar 

  57. Geisler RL (1978) The relationship between solid-propellant formulation variables and nozzle recession rates. JANNAF Rocket Nozzle Technology Subcommittee Meeting, Lancaster, July, 1978

    Google Scholar 

  58. Swope LW, Berard MF (1964) Effects of solid-rocket propellant formulations and exhaust-gas chemistries on the erosion of graphite nozzles. In: AIAA solid propellant rocket conference, Palo Alto

    Google Scholar 

  59. Acharya R, Kuo KK (2006) Effect of chamber pressure & propellant composition on erosion rate of graphite rocket nozzle. In: Proceedings of 44th, AIAA aerospace sciences meeting and exhibit, Reno, NV, paper no. AIAA 2006–363, American Institute of Aeronautics and Astronautics, Reston, 1–15, 2006

    Google Scholar 

  60. Chen B, Zhang LT, Cheng LF, Luan XG (2009) Erosion resistance of needled carbon/carbon composites exposed to solid rocket motor plumes. Carbon 47(6):1474–1479

    Article  CAS  Google Scholar 

  61. Kuo KK, Keswani ST (1985) A comprehensive theoretical model for carbon–carbon composite nozzle recession. Compos Sci Technol 42(3–4):145–164

    CAS  Google Scholar 

  62. Maisonneuve Y (1997) Ablation of solid–fuel booster nozzle materials. Aerosp Sci Technol 1(4):277–289

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suresh Kumar .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Kumar, S., Ranjan, A., Manocha, L.M., Prasad, N.E. (2020). SiC-Based Composites Through Liquid Infiltration Routes. In: Mahajan, Y., Roy, J. (eds) Handbook of Advanced Ceramics and Composites. Springer, Cham. https://doi.org/10.1007/978-3-319-73255-8_25-2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-73255-8_25-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-73255-8

  • Online ISBN: 978-3-319-73255-8

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics

Chapter history

  1. Latest

    SiC-Based Composites Through Liquid Infiltration Routes
    Published:
    25 December 2019

    DOI: https://doi.org/10.1007/978-3-319-73255-8_25-2

  2. Original

    SiC-Based Composites Through Liquid Infiltration Routes
    Published:
    14 August 2019

    DOI: https://doi.org/10.1007/978-3-319-73255-8_25-1