Skip to main content

Novel Inorganic Compound Based Sensors for Their Application in Nuclear Energy Programs

  • Living reference work entry
  • First Online:
Handbook of Advanced Ceramics and Composites
  • 325 Accesses

Abstract

Structure of the inorganic compounds determines their electrical conductivity, dielectric, optical, magnetic properties, etc. These structure and properties together decide the suitability of employing these materials for a given technological application. If electrical conductivity of materials is exploited for application as sensor, the type of conductivity, viz., ionic, electron/hole, and ionic-cum-electronic, exhibited by them needs to be understood. Depending on the type of conduction, they are classified as solid electrolytes, semiconductors, and mixed conductors. Several solid electrolyte systems where conductivity due to cations such as H+, Li+, Na+, Ag+, etc. are known, while only a few systems for anions such as H-, O2-, and F- are known. The conducting ion present in the solid electrolyte dictates its application as sensor in a chosen process stream, although indirect methods can also be deployed to use a solid electrolyte whose ion of conduction is different from the species to be sensed. The magnitude of ionic conductivity, transport number of the conducting ions, and the stability of the solid electrolyte in the environment of the application need to be evaluated before its selection. Although several semiconducting elements and compounds (oxides, sulfides, nitrides, etc.) are known, the use of elemental semiconductors is generally restricted to electrical and electronic devices. On the other hand, oxide semiconductors find a large application as chemical sensors for process and environmental monitoring. The bandgap, intrinsic and extrinsic conductivity, stability of the compound in the operating environment, temperature, etc. are important parameters that decide their application as sensors. This chapter deals with the selection of solid electrolyte based on oxides, hydridehalides, aluminates, phosphates, and halides their application in various nuclear energy programs. The experience of using semiconducting oxides, niobates, molybdates, etc. for various process monitoring is discussed. A brief mention on the use of titanates for piezoelectric sensor application and molten electrolyte-based sensor systems is made.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

ADSS:

Accelerator-driven subcritical systems

BCC:

Body-centered cubic

BIT:

Bismuth titanate

CSZ:

Calcia-stabilized zirconia

FBR:

Fast breeder reactor

LBE:

Lead-bismuth eutectic

MPB:

Morphotropic phase boundary

NASICON:

Sodium super ionic conductor

PSZ:

Partially stabilized zirconia

PZT:

Lead zirconate titanate

YDT:

Yttria-doped thoria

YSZ:

Yttria-stabilized zirconia

References

  1. Geller S (ed) (1977) Solid electrolytes. Springer, Berlin

    Google Scholar 

  2. Nafe H (1984) Ionic conductivity of ThO2- and ZrO2-based electrolytes between 300 and 2000 K. Solid State Ionics 13:255–263

    Article  CAS  Google Scholar 

  3. Patterson JW (1971) Conduction domains for solid electrolytes. J Electrochem Soc 118:1033–1039

    Article  CAS  Google Scholar 

  4. Jayaraman V, Gnanasekaran T (2016) Review – evolution of the development of in-sodium oxygen sensor and its present status. J Electrochem Soc 163:B395–B402

    Article  CAS  Google Scholar 

  5. Borgstedt HU, Mathews CK (1987) Applied chemistry of alkali metals, chapter 5. Plenum Press, New York

    Google Scholar 

  6. Hobdell MR, Smith CA (1982) Electrochemical techniques for monitoring dissolved carbon, hydrogen and oxygen in liquid sodium. J Nucl Mater 110:125–139

    Article  CAS  Google Scholar 

  7. Minushkin B, Kolodney M (1967) United Nuclear Corporation, United States Atomic Energy Commission (USAEC) Report UNC-5131

    Google Scholar 

  8. Iyer VS, Venugopal V, Mohapatra S, Singh Z, Roy KN, Prasad R, Sood DD (1988) Standard molar Gibbs free energy of formation of NaZrO3 J. Chem Thermodyn 20:781–784

    Google Scholar 

  9. Maier J, Warhus U (1986) Thermodynamic investigations of Na2ZrO3 by electrochemical means. J Chem Thermodyn 18:309–316

    Article  CAS  Google Scholar 

  10. Dash S, Singh Z, Parida SC, Venugopal V (2005) Thermodynamic studies on Rb2ThO3(S). J Alloys Compd 398:219–227

    Article  CAS  Google Scholar 

  11. Carter CB, Norton MG (2007) Ceramics materials – science and engineering, chapter 34. Springer, New York

    Google Scholar 

  12. Kingery WD, Bowen HK, Uhlmann DR (2004) Introduction to ceramics, 2nd edn. Wiley, New York

    Google Scholar 

  13. Greskovich C, O’Clair CR, Curran MJ (1972) Preparation of Y2O3 doped ThO2. J Am Ceram Soc 55:324–325

    Article  CAS  Google Scholar 

  14. Ganesan R, Vivekanandhan S, Gnanasekaran T, Periaswami G, Srinivasa RS (2004) Novel approach for the bulk synthesis of nanocrystalline yttria doped thoria powders via polymeric precursor routes. J Nucl Mater 325:134–140

    Article  CAS  Google Scholar 

  15. Jayaraman V, Krishnamurthy D, Ganesan R, Thiruvengadasami A, Sudha R, Prasad MVR, Gnanasekaran T (2007) Development of yttria-doped thoria solid electrolyte for use in liquid sodium systems. Ionics 13:299–303

    Article  CAS  Google Scholar 

  16. Ganesan R, Jayaraman V, Rajan Babu S, Sridharan R, Gnanasekaran T (2011) Development of sensors for on-line monitoring of nonmetallic impurities in liquid sodium. J Nucl Sci Technol 48:483–489

    Article  CAS  Google Scholar 

  17. Takizuka T, Tsujimoto K, Sasa T, Kenji NK, Takano H (2002) Design study of lead-bismuth cooled ADS dedicated to nuclear waste transmutation. Prog Nucl Energy 40:505–512

    Article  CAS  Google Scholar 

  18. Gorynin IV, Korzov GP, Markov VC, Lavrukhin VS, Yakovlev VA (1998) Structural materials for power plants with heavy liquid metals as coolants. In: Proceedings of the conference on heavy metal liquid coolants in nuclear technology (HLMC-98), Obninsk, vol 1, pp 120–132

    Google Scholar 

  19. Gromov BF, Orlov YI, Martynov PN, Gulevsky VA (1998) The problems of technology of the heavy liquid metal coolants (Lead-Bismuth, Lead), In: Proceedings of the conference on heavy metal liquid coolants in nuclear technology (HLMC-98), Obninsk, Russia, Vol 1, pp 87–91

    Google Scholar 

  20. Martynov PN, Orlov YI (1998) Slagging process in lead-bismuth loop- prevention and elimination of critical situations, In: Proceedings of the conference on heavy metal liquid coolants in nuclear technology (HLMC-98), Obninsk, Russia, Vol 2, pp 565–576

    Google Scholar 

  21. Li N (2002) Active control of oxygen in molten lead–bismuth eutectic systems to prevent steel corrosion and coolant contamination. J Nucl Mater 300:73–81

    Article  CAS  Google Scholar 

  22. Zhang J, Li N (2008) Review of the studies on fundamental issues in LBE corrosion. J Nucl Mater 373:351–377

    Article  CAS  Google Scholar 

  23. Blokhin VA, Budylov EG, Velikanovich RI, Gorelov IN, Deryugin AN, Ivleva JI, Kozina MI, Musikhin YA, Ponimash ID, Sorokin AD, Shimkevich AL, Shmatko AB, Sherbakov EG (1998) Experience gained in creating and operating solid electrolyte meters of oxygen activity in lead-bismuth coolant. In: Proceedings of the conference on heavy metal liquid coolants in nuclear technology (HLMC-98), Obninsk, vol 2, pp 631–635

    Google Scholar 

  24. Konys J, Schroer C, Wedemeyer O (2009) Electrochemical oxygen sensors for corrosion control in lead-cooled nuclear reactors. Corros Sci 65:798–808

    Article  CAS  Google Scholar 

  25. Sahu SK, Ganesan R, Jayaraman V, Gnanasekaran T (2012) Development of zirconia based oxygen sensor for lead and lead-bismuth eutectic. Mat Sci Forum 710:751–756

    Article  CAS  Google Scholar 

  26. Kiukkola K, Wagner C (1957) Galvanic cells for the determination of the standard molar free energy of formation of metal halides, oxides, and sulfides at elevated temperatures. J Electrochem Soc 104:308–316

    Article  CAS  Google Scholar 

  27. Kiukkola K, Wagner C (1957) Measurements on galvanic cells involving solid electrolytes, J Electrochem Soc 104:379–387

    Article  Google Scholar 

  28. Jacob KT, Alcock CB (1973) Activity of indium in α-solid solutions of Cu + In, Au + In and Cu + Au + In alloys. Acta Metall 21:1011–1016

    Article  CAS  Google Scholar 

  29. Katayama I, Shimazawa K, Zivkovic D, Manasijevic D, Zivkovic Z, Yamashita H (2005) Experimental study on gallium activity in the Ga-In-Tl alloys by EMF method with zirconia solid electrolyte. Thermochim Acta 431:138–143

    Article  CAS  Google Scholar 

  30. Jendrzejczyk-Handzli D (2018) Thermodynamic properties of liquid silver-gold–gallium alloys determined from EMF measurements with solid YSZ electrolyte. Thermochim Acta 662:126–134

    Article  CAS  Google Scholar 

  31. Jacob KT, Gupta P (2015) Oxygen potentials and phase equilibria in the system Ca–Co–O and thermodynamic properties of Ca3Co2O6 and Ca3Co4O9. J Solid State Chem 221:57–65

    Article  CAS  Google Scholar 

  32. Jacob KT, Gupta P, Han D, Uda T (2013) Thermodynamics of NdRhO3 and phase relations in the system Nd–Rh–O. Calphad 43:71–79

    Article  CAS  Google Scholar 

  33. Aiswarya PM, Ganesan R, Gnanasekaran T (2017) Partial phase diagrams of Pb-Mo-O system and the standard molar Gibbs energy of formation of PbMoO4 and Pb2MoO5. J Nucl Mater 493:310–321

    Article  CAS  Google Scholar 

  34. Gnanasekaran T, Mahendran KH, Kutty KVG, Mathews CK (1989) Phase diagram studies on the Na-Mo-O system. J Nucl Mater 165:210–216

    Article  CAS  Google Scholar 

  35. Gnanasekaran T, Mahendran KH, Periaswami G, Mathews CK, Borgstedt HU (1987) Stability of ternary oxygen compounds of molybdenum in liquid sodium. J Nucl Mater 150:113–127

    Article  CAS  Google Scholar 

  36. Knights CF, Phillips BA (1977) Phase diagrams and thermodynamic studies of the Cs-Cr-O, Na-Cr-O and Na-Fe-O systems and their relationships to the corrosion of steels by caesium and sodium. In: Glasser FP, Potter PE (eds) High temperature chemistry of inorganic and ceramic materials, Special publication no. 30. Chemical Society, London, pp 134–145

    Google Scholar 

  37. Sreedharan OM, Madan BS, Gnanamoorthy JB (1983) Threshold oxygen levels in Na(l) for the formation of NaCrO2(s) on 18-8 stainless steels from accurate thermodynamic measurements. J Nucl Mater 119:296–300

    Article  CAS  Google Scholar 

  38. Gnanasekaran T, Mathews CK (1986) Threshold oxygen levels in sodium necessary for the formation of NaCrO2 in sodium-steel systems. J Nucl Mater 140:202–213

    Article  CAS  Google Scholar 

  39. Moseley PT, Toefield BC (eds) (1987) Solid state gas sensors. Adam Hilger, Bristol

    Google Scholar 

  40. Yamazoe N, Miura N (1991) Some basic aspects of semiconductor gas sensors. In: Yamaguchi S (ed) Chemical sensor technology, vol 3. Kodansha Ltd., Tokyo. (1992), pp 19–42

    Google Scholar 

  41. Morrison SR (1978) Adsorption and desorption. In: The chemical physics of surfaces. Plenum Press, New York, pp 251–295

    Google Scholar 

  42. Seiyama T (1988) Surface reactivity of oxide materials in oxidation-reduction environment. In: Nowotny J, Dufour LC (eds) Materials science monographs, vol 47. Elsevier, New York, pp 189–217

    Google Scholar 

  43. Sunu S (2004) Investigations on electrical and gas sensing properties of pure and doped MoO3 and WO3, PhD Thesis, University of Madras

    Google Scholar 

  44. Yamazoe N (1991) New approaches for improving semiconductor gas sensors. Sensors Actuators B 5:7–19

    Article  CAS  Google Scholar 

  45. Mitsudo H (1980) Ceramics for gas and humidity sensors (part 1) – gas sensor. Ceramics 15:339–345

    CAS  Google Scholar 

  46. Kanefusa S, Nitta M, Haradome M (1980) Thick film gas leak detector for town gas. J Chem Soc Jpn 75:1591–1595

    Google Scholar 

  47. Yamazoe N, Kurokawa Y, Seiyama T (1983) Effects of additives on semiconductor gas sensors. Sensors Actuators 4:283–289

    Article  CAS  Google Scholar 

  48. Suzuki T, Yamazaki T, Yoshioka H, Hikichi K (1988) Influence of thickness on H2 gas sensor properties in polycrystalline SnOx films prepared by ion-beam sputtering. J Mater Sci 23:1106–1111

    Article  CAS  Google Scholar 

  49. McAleer JF, Moseley PT, Norris JOW, Williams DE, Tofield BC (1988) Tin dioxide gas sensors. Part 2 – the role of surface additives. J Chem Soc Faraday Trans 1 84:441–457

    Article  CAS  Google Scholar 

  50. Sree Rama Murthy A, Ashok Kumar A, Prabhu E, Clinsha PC, Lakshmigandhan I, Chandramouli S, Mahendran KH, Gnanasekar KI, Jayaraman V, Nashine BK, Rajan KK, Gnanasekaran T (2014) Performance of semiconducting oxide based hydrogen sensor for argon cover gas in engineering scale sodium facility. Nucl Engg Design 273:555–559

    Article  CAS  Google Scholar 

  51. Shekhar C, Gnanasekar KI, Prabhu E, Jayaraman V, Gnanasekaran T (2011) In2O3 + x BaO (x = 0.5 – 5 at.%) – a novel material for trace level detection of NOx in the Ambient. Sensors Actuators B Chem 155:19–27

    Article  CAS  Google Scholar 

  52. Mangamma G, Jayaraman V, Gnanasekaran T, Periaswami G (1998) Effect of Silica addition on H2S sensing properties of CuO-SnO2 sensors. Sensors Actuators B 53:133–139

    Article  CAS  Google Scholar 

  53. Gnanasekaran T (1999) Thermochemistry of binary Na–NaH and ternary Na–O–H systems and the kinetics of reaction of hydrogen/water with liquid sodium – a review. J Nucl Mater 274:252–272

    Article  CAS  Google Scholar 

  54. Müller U (2006) Inorganic structural chemistry, 2nd edn. Wiley, West Sussex

    Book  Google Scholar 

  55. Ehrlich P, Peik K, Koch E (1963) Thermochemische Messungen an den Hydridhalogeniden der Erdalkalimetalle. Z fuer Anorganische und Allegemeine Chemie 324:113–224

    Article  CAS  Google Scholar 

  56. Ramanathan V, Babu B, Rajendran B, Sahu HK (2001) Nickel diffuser based instrumentation for real time detection of hydrogen concentration in liquid sodium in fast breeder test reactor. In: Proceedings eighth national seminar on physics and technology of sensors, Kalpakkam, 27 Feb –1 Mar 2001, C-11.1-3

    Google Scholar 

  57. Funada T, Nihei I, Yuhara S, Nakasuji T (1979) Measurements of hydrogen concentration in liquid sodium by using an inert gas carrier method. Nucl Technol 45:158–165

    Article  CAS  Google Scholar 

  58. Hills MP, Thompson C, Henson MA, Moores A, Schwandt C, Kumar RV (2009) Accurate measurement of hydrogen in molten aluminium using current reversal mode. In: Bearne G (ed) Proceedings of the technical sessions presented by the TMS aluminum committee at the TMS 2009 annual meeting & exhibition, San Francisco, 15–19 Feb 2009. Minerals, Metals and Materials Society, Warrendale, pp 707–712

    Google Scholar 

  59. Sridharan R, Mahendran KH, Gnanasekaran T, Periaswami G, Varadaraju UV, Mathews CK (1995) On the phase relationships and electrical properties in the CaCl2 – CaH2 system. J Nucl Mater 223:72–79

    Article  CAS  Google Scholar 

  60. Joseph K, Sujatha K, Nagaraj S, Mahendran KH, Sridharan R, Periaswami G, Gnanasekaran T (2000) Investigations on the phase equilibria of some hydride ion conducting electrolyte systems and their application for hydrogen monitoring in sodium coolant. J Nucl Mater 344:285–290

    Article  CAS  Google Scholar 

  61. Smith CA (1972) An electrochemical hydrogen concentration cell – with application to sodium systems, British Nuclear Laboratories, CEGB Report, RD/B/N-2331

    Google Scholar 

  62. Bouchacourt M, Debergh P, Oberlin C and Saint Paul P (1984), EdF experience on analysis of non-metallic impurities in sodium. In: Proceedings of the 3rd international conference on liquid metal engineering and technology, Oxford, 9–13 Apr 1984, vol 1, pp 45–52

    Google Scholar 

  63. Mason L, Morrison NS, Robertson CM, Trevillion A (1984) The monitoring of oxygen, hydrogen and carbon in the sodium circuits of PFR. In: Proceedings of the 3rd international conference on liquid metal engineering and technology, Oxford, 9–13 Apr 1984, vol 1, pp 53–60

    Google Scholar 

  64. Smith CA, Simm PA (1984) Calibration and performance of galvanic cell hydrogen and oxygen meters in sodium. In: Proceedings of the 3rd international conference on liquid metal engineering and technology, Oxford, 9–13 Apr 1984, vol 3, pp 111–116

    Google Scholar 

  65. Pankratz LB (1984) Thermodynamic properties of halides, Bulletin 874, US Department of the Interior, Bureau of Mines, 830 pp

    Google Scholar 

  66. Makiura R, Yonemura T, Yamada T, Yamauchi M, Ikeda R, Kitagawa H, Takata M (2009) Size-controlled stabilisation of the superionic phase to room temperature in polymer-coated AgI nanoparticles. Nat Mater 8:476–480

    Article  CAS  Google Scholar 

  67. Hull S (2004) Superionics: crystal structures and conduction processes. Rep Prog Phys 67:1233–1314

    Article  CAS  Google Scholar 

  68. West AR (1989) Solid state chemistry and its applications. Wiley, New York

    Google Scholar 

  69. Rodriguez LA, Zapata J, Vargas RA, Pena Lara D, Diosa JE (2016) Superionic behaviour in the xAgI – (1-x)CsAg2I3 polycrystalline system. J Phys Chem Solids 93:126–130

    Article  CAS  Google Scholar 

  70. Shannon RD (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cyrstallogr Sect A A32:751–767

    Article  CAS  Google Scholar 

  71. Bazan JC, Schmidt JA (1976) A Cu(I) ion conductor obtained by replacement of Ag(I) in α–AgI. J Appl Electrochem 6:411–415

    Article  CAS  Google Scholar 

  72. Armstrong RD, Bulmer RS, Dickinson T (1973) Some factors responsible for high ionic conductivity in simple solid compounds. In: van Gool W (ed) Fast ion transport in solids. North Holland Publishing Company, Amsterdam, pp 269–284

    Article  CAS  Google Scholar 

  73. Shahi K, Wagner JB Jr (1980) Anomalous ionic conduction in AgBr-AgI mixed crystals and multiphase systems. Phy Rev B 23:6417–6421

    Article  Google Scholar 

  74. Bazan JC, Pettigrosso RS (1994) A DSC and conductivity study of the influence of cesium ion on the beta to alpha transition in silver iodide. In: Chowdari BVR, Yahaya M, Talib IB, Salleh MM (eds) Solid state ionics materials. World Scientific, Singapore, pp 205–210

    Google Scholar 

  75. Rifuiddin MH (2007) Superionic conducting phase in Cd-substituted CsAgI3. Solid State Commn 144:293–295

    Article  CAS  Google Scholar 

  76. El Kettai M, Malugani JP, Mercier R, Tachez M (1986) Phase transitions and conductivity in superionic Ag3SI1-xBrx solid solutions. Solid State Ionics 20:87–92

    Article  Google Scholar 

  77. Beeken RB, Wright TJ, Sakuma T (1999) Effect of chloride substitution in the fast ion conductor Ag3SBr. J Appl Phys 85:7635–7638

    Article  CAS  Google Scholar 

  78. West AR (2007) Solid state chemistry and its applications. Wiley, New York

    Google Scholar 

  79. Ihara S, Warita Y, Suzuki K (1984) Ionic conductivity in AgI-xClx. Phys Status Solidi A 86:729–734

    Article  CAS  Google Scholar 

  80. Clinsha PC, Gnanasekar KI, Jayaraman V, Gnanasekaran T (2015) AgI1-xClx (x = 0–0.05) electrolytes for trace level sensing of chlorine. In: Proceedings 2nd international symposium of physics and technology of sensors, IEEE Xplore, pp 94–96

    Google Scholar 

  81. Clinsha PC (2017) Studies on synthesis, characterization of AgI1-xClx solid solutions for I2 and Cl2 sensing properties, PhD Thesis, Homi Bhabha National Institute (University)

    Google Scholar 

  82. Kummer JT (1992) β-Alumina electrolytes. Prog Solid State Chem 7:141–175

    Article  Google Scholar 

  83. DeVries RC, Roth WI (1969) Critical evaluation of the literature data on beta alumina and related phases: I-phase equilibria and characterization of beta alumina phases. Am Ceram Soc 52:364–369

    Article  CAS  Google Scholar 

  84. Bragg WL, Gottfried C, West J (1931) The structure of β alumina. Z Krist 77:255–274

    CAS  Google Scholar 

  85. Sudworth JL, Tilley AR (1985) The sodium sulphur battery. Chapman & Hall, London

    Google Scholar 

  86. Takikawa O, Imai A, Harata M (1982) Characteristics of the Na/beta-alumina/Na cell as a sodium vapor pressure sensor. Solid State Ionics 7:101–107

    Article  CAS  Google Scholar 

  87. Jayaraman V, Prabhu E, Sree Rama Murthy A, Clinsha PC, Gnanasekar KI, Gnanasekaran T (2014) Na – β – Al2O3 based sensor for sodium aerosol. Sensors Actuators B 202:9–13

    Article  CAS  Google Scholar 

  88. Asuvathraman R, Gnanasekar KI, Clinsha PC, Ravindran TR, Govindan Kutty KV (2015) Investigations on the charge compensation on Ca and U substitution in CePO4 by using XPS, XRD and Raman spectroscopy. Ceram Int 41:3731–3739

    Article  CAS  Google Scholar 

  89. Jena H, Maji BK, Asuvathraman R, Govindan Kutty KV (2012) Synthesis and thermal characterization of glass bonded Ca-chloroapatite matrices for pyrochemical chloride waste immobilization. J Non-Crystalline Solids 358:1681–1686

    Article  CAS  Google Scholar 

  90. Hong HYP (1976) Crystal structures and crystal chemistry in the system Na1+xZr2SixP3−xO12. Mater Res Bull 11:173–182

    Article  CAS  Google Scholar 

  91. Goodenough JB, Hong HYP, Kafalas JA (1976) Fast Na+ ion transport in skeleton structures. Mater Res Bull 11:203–220

    Article  CAS  Google Scholar 

  92. Chavez ML, Quintana P, West AR (1986) New Li+ ion conductors, Li2−4xZr1+x(PO4)2. Mat Res Bull 21:1411–1416

    Article  CAS  Google Scholar 

  93. Sree Rama Murthy A, Jayaraman V, Gnanasekaran T (2017) Preparation and characterization of some lithium – ion conductors. Solid State Ionics 303:138–143

    Article  CAS  Google Scholar 

  94. Vella G, Aiello G, Füetterer MA, Giancarli L, Oliveri E, Tavassoli F (1998) Water-cooled Pb–17Li test blanket module for ITER: impact of the structural material grade on the neutronic responses. J Nucl Mater 258–263:357–361

    Article  Google Scholar 

  95. Tas H, Malang S, Reiter F, Sannier J (1988) Liquid breeder materials. J Nucl Mater 155–157:178–187

    Article  Google Scholar 

  96. Hubberstey P (1997) Pb-17Li and lithium: a thermodynamic rationalisation of their radically different chemistry. J Nucl Mater 247:208–214

    Article  CAS  Google Scholar 

  97. Hubberstey P, Sample T, Barker MG (1991) Continuous monitoring of the composition of liquid Pb-17Li eutectic using electrical resistivity methods. J Nucl Mater 179–181:886–890

    Article  Google Scholar 

  98. Conrad R (1991) Irradiation experiments on liquid tritium breeding material Pb-17Li in the HFR Petten. Fusion Eng Des 14:289–297

    Article  CAS  Google Scholar 

  99. Conrad R, Debarberis L, Coen V, Flament T (1991) Irradiation of liquid breeder material Pb-17Li with in-situ tritium release measurements in the LIBRETTO 2 experiment. J Nucl Mater 179–181:875–878

    Article  Google Scholar 

  100. Yamazoe N, Fuchigami J, Kishikawa M, Seiyama T (1979) Interactions of tin oxide surface with O2, H2O and H2. Suf Sci 86:335–344

    Article  CAS  Google Scholar 

  101. Watson J, Ihokura K (1999) Gas sensing materials. MRS Bull 24:14–17

    Article  CAS  Google Scholar 

  102. Bielanski A, Haber J (1979) Oxygen in catalysis on transition metal oxides. Catal Rev – Sci Eng 19:1–41

    Article  CAS  Google Scholar 

  103. Kadam RM, Sastry MD, Iyer RM, Gopalakrishnan IK, Yakhmi JV (1997) Electron paramagnetic resonance studies in HgMo6S8 doped with Cu2+: evidence for cationic mobility. J Phys Condens Matter 9:551–556

    Article  CAS  Google Scholar 

  104. Sunu SS, Prabhu E, Jayaraman V, Gnanasekar KI, Gnanasekaran T (2004) Electrical conductivity and gas sensing properties of MoO3. Sensors Actuators B Chem 101:161–174

    Article  CAS  Google Scholar 

  105. Huffman DE (1987) Studies in molybdenum catalysts – I. Metal vapor reactions of molybdenum trioxide with various alkoxy silanes, II. Investigations of oxide supported molybdenum catalysts prepared from molybdenum (VI) dioxodiethoxide, PhD Thesis, Oregon State University

    Google Scholar 

  106. Brazdol JF, Suresh DD, Grasselli RK (1980) Redox kinetics of bismuth molybdate ammoxidation catalysts. J Catalysis 66:347–367

    Article  Google Scholar 

  107. Zhai Z, Getsoian AB, Bell AT (2013) The kinetics of selective oxidation of propene on bismuth vanadium molybdenum oxide catalysts. J Catalysis 308:25–36

    Article  CAS  Google Scholar 

  108. Mars P, van Krevelen DW (1954) Oxidations carried out by means of vanadium oxides catalysts. Chem Eng Sci 3:41–59

    Article  CAS  Google Scholar 

  109. Sunu SS, Jayaraman V, Prabhu E, Gnanasekar KI, Gnanasekaran T (2004) Ag6Mo10O33 – a new silver ion conducting ammonia sensor material. Ionics 10:244253

    Article  Google Scholar 

  110. Prabhu E, Muthuraja S, Gnanasekar KI, Jayaraman V, Sivabalan S, Gnanasekaran T (2008) Ammonia sensing properties of thick and thin films of Ag6Mo10O33 and Cr1.8Ti0.2O3+δ. Surf Engg 24:170–175

    Article  CAS  Google Scholar 

  111. Kohli A, Wang CC, Akbar SA (1999) Niobium pentoxide as a lean-range oxygen sensor. Sensors Actuators B 56:121–128

    Article  CAS  Google Scholar 

  112. Kukli K, Ritala M, Leskela M (2001) Development of dielectric properties of niobium oxide, tantalum oxide and aluminium oxide based nanolayeredmaterials. J Electrochem Soc 148:F35–F41

    Article  CAS  Google Scholar 

  113. Wang Z, Hu Y, Wang W, Zhang X, Wang B, Tian H et al (2012) Fast and highly-sensitive hydrogen sensing of Nb2O5 nanowires at room temperature. Int J Hydrog Energy 37:4526–4532

    Article  CAS  Google Scholar 

  114. Yu J, Yuan L, Wen H, Shafiei M, Field MR, Liang J et al (2013) Hydrothermally formed functional niobium oxide doped tungsten nanorods. Nanotechnology 24:495–501

    Google Scholar 

  115. Yu J, Wen H, Shafiei M, Field MR, Liu ZF, Wlodarski W et al (2013) A hydrogen/methane sensor based on niobium tungsten oxide nanorods synthesized by hydrothermal method. Sensors Actuators B 184:118–129

    Article  CAS  Google Scholar 

  116. Meixner H, Lampe U (1996) Metal oxide sensors. Sensors Actuators B 33:198–202

    Article  CAS  Google Scholar 

  117. Henshaw GS, Dusastre V, Williams DE (1996) Selectivity and composition dependence of gas sensitive resistors. Part 3 – properties of the solid solution series (CrNbO4)x (Sn1-ySbO2)1-x (0≤ x ≤1, y= 0, 0.01, 0.5). J Mater Chem 6:1351–1354

    Article  CAS  Google Scholar 

  118. Henshaw GS, Morris L, Gellman LJ, Williams DE (1996) Selectivity and composition dependence of gas sensitive resistors. Part 4 – properties of some rutile solid solution compounds. J Mater Chem 6:1883–1887

    Article  CAS  Google Scholar 

  119. Greenwood NN, Earnshaw A (2012) Chemistry of the elements. Elsevier Science, Amsterdam

    Chapter  Google Scholar 

  120. Christensen AN, Johanssen A, Lebech B (1976) Magnetic properties and structure of chromium niobium oxide and iron tantalum oxide. J Phys C Solid State Phys 9:2601–2610

    Article  CAS  Google Scholar 

  121. Sree Rama Murthy A (2016) PhD thesis, Indian Institute of Science, Bangalore

    Google Scholar 

  122. Sree Rama Murthy A, Gnanasekar KI, Jayaraman V, Umarji AM, Gnanasekaran T (2015) Conductometric sensing of H2 by chromium niobate. IEEE Sensors J 15:7054–7460

    Article  CAS  Google Scholar 

  123. Salzano FJ, Newman L, Hobdell MR (1971) An electrochemical carbon meter for use in sodium. Nucl Technol 10:335–347

    Article  CAS  Google Scholar 

  124. Hobdell MR, Gwyther JR (1975) The use of alkali carbonates in carbon concentration cells. J Appl Electrochem 5:263–269

    Article  CAS  Google Scholar 

  125. Hobdell MR, Trevillion EA, Gwyther JR, Tyfield SP (1982) Calibration tests of an electrochemical carbon meter. J Electrochem Soc 129:2746–2748

    Article  CAS  Google Scholar 

  126. Hobdell MR, Gwyther JR (1973) Development and use of electrochemical techniques for studying carbon behavior in liquid alkali metal systems, in: Proc. of the international conference on liquid alkali metals, Nottingham University, England, 4–6 Apr 1973, British Nuclear Energy Society, London, pp 127–132

    Google Scholar 

  127. Rajan Babu S, Reshmi PR, Gnanasekaran T (2012) An electrochemical meter for measuring carbon potential in molten sodium. Electrochim Acta 59:522–530

    Article  CAS  Google Scholar 

  128. Cassir M, Moutiers G, Daynck J (1993) Stability and characterization of oxygen species in alkali molten carbonate: a thermodynamic and electrochemical approach. J Electrochem Soc 140:3114–3123

    Article  CAS  Google Scholar 

  129. Appleby AJ, Nicholson S (1977) Reduction of oxygen in alkali carbonate melts. J Electroanal Chem 83:309–328

    Article  CAS  Google Scholar 

  130. Appleby AJ, Nicholson S (1980) Reduction of oxygen in lithium-potassium carbonate melt. J Electroanal Chem 112:71–76

    Article  CAS  Google Scholar 

  131. Barker MG, Hubberstey P, Dadd AT, Frankham SA (1983) The interaction of chromium with nitrogen dissolved in liquid lithium. J Nucl Mater 114:143–149

    Article  CAS  Google Scholar 

  132. Adams PF, Down MG, Hubberstey P, Pulham RJ (1975) Solubilities, and solution and solvation enthalpies, for nitrogen and hydrogen in liquid lithium. J Less-Common Met 42:325–334

    Article  CAS  Google Scholar 

  133. Barker MG, Chamberlain DK, Frankham SA, Moon NJ, Smith SE (1988) Electrochemical measurements in liquid alkali metals. In: Proceedings of the 4th international conference on liquid metal engineering and technology, Avignon, 7–21 Oct 1988, vol 3, pp 606-1–606-10

    Google Scholar 

  134. Jaffe B, Cook WR Jr, Jaffe H (1971) Piezoelectric ceramics. Academic Press, London, p 131

    Google Scholar 

  135. Hong SH, McKinstry ST, Messing GL (2000) Dielectric and electromechanical properties of textured niobium-doped bismuth titanate ceramics. J Am Ceram Soc 83:113–118

    Article  CAS  Google Scholar 

  136. Sakai T, Watanabe T, Osada M, Kakihana M, Noguchui Y, Miyayama M, Funakubo H (2003) Crystal structure and ferroelectric property of tungsten-substituted Bi4Ti3O12 thin films prepared by metal-organic chemical vapor deposition. J Appl Phys 42:2850–2852

    Article  CAS  Google Scholar 

  137. Kim JK, Song TK, Kim SS, Kim J (2002) Ferroelectric properties of tungsten-doped bismuth titanate thin film prepared by sol–gel route. Mater Letter 57:964–968

    Article  CAS  Google Scholar 

  138. Ng SH, Xue J, Wang J (2002) Bismuth titanate from mechanical activation of a chemically coprecipitated precursor. J Am Ceram Soc 85:2660–2665

    Article  CAS  Google Scholar 

  139. Takenaka T, Sakata K (1980) Grain orientation and electrical properties of hot forged Bi4Ti3O12 ceramics. Jpn J Appl Phys 19:31–39

    Google Scholar 

  140. Fuierer PA, Nichtawitz A (1994) Electric field assisted hot forging of bismuth titanate. In: Proceedings of 1994 IEEA symposium on applications of ferroelectrics, University Park, 7–10 Aug 1994, pp 126–129

    Google Scholar 

  141. Zaremba T (2009) Anisotropic grain growth of bismuth titanate in molten salt fluxes. Z Kristallogr Suppl 30:477–482

    Article  Google Scholar 

  142. Chen Jie G, Song ZC (2011) Molten salt synthesis of anisotropic Bi4Ti3O12 particles. Adv Mater Res 284:1452–1455

    Google Scholar 

  143. Kimura T, Yamaguchi Y (1983) Fused salt synthesis of Bi4Ti3O12. Ceram Int 9:13–17

    Article  CAS  Google Scholar 

  144. Asokane C et al Indira Gandhi Centre for Atomic Research, Kalpakkam (unpublished results)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Gnanasekaran .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Jayaraman, V., Gnanasekaran, T. (2019). Novel Inorganic Compound Based Sensors for Their Application in Nuclear Energy Programs. In: Mahajan, Y., Roy, J. (eds) Handbook of Advanced Ceramics and Composites. Springer, Cham. https://doi.org/10.1007/978-3-319-73255-8_23-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-73255-8_23-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-73255-8

  • Online ISBN: 978-3-319-73255-8

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics