Skip to main content

Abelian Invertible Automata

  • Chapter
  • First Online:
Reversibility and Universality

Part of the book series: Emergence, Complexity and Computation ((ECC,volume 30))

Abstract

Invertible transducers are particular Mealy automata that define so-called automata groups, subgroups of the full automorphism group of the infinite binary tree. In the recent past, automata groups have become a major source of interesting and challenging constructions in group theory. While this research typically focuses on properties of the associated groups, we describe the topological structure of the associated automata in the special case where the group in question is free Abelian. As it turns out, there are connections between these automata and the theory of algebraic number fields as well as the theory of tiles. We conclude with a conjecture about the connectivity properties of the canonical invertible automata generating free Abelian groups.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abramsky, S.: A structural approach to reversible computation. Theor. Comput. Sci. 347, 441–464 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bartholdi, L., Reznykov, I.I., Sushchansky, V.I.: The smallest mealy automaton of intermediate growth. J. Algebr. 295, 387–414 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bartholdi, L., Silva, P.V.: Groups defined by automata. CoRR (2012). arXiv:1012.1531

  4. Bennett, C.H.: Logical reversibility of computation. IBM J. Res. Dev. 17, 525–532 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bennett, C.H.: The thermodynamics of computation–a review. IJTP 21(12), 905–940 (1982)

    Google Scholar 

  6. Berstel, J.: Transductions and context-free languages (2009). http://www-igm.univ-mlv.fr/berstel/LivreTransductions/LivreTransductions.html

  7. Eilenberg, S.: Automata, Languages and Machines, vol. A. Academic Press, Dublin (1974)

    MATH  Google Scholar 

  8. Elgot, C.C., Mezei, J.E.: On relations defined by generalized finite automata. IBM J. Res. Dev. 9, 47–68 (1965). January

    Article  MathSciNet  MATH  Google Scholar 

  9. Gilbert, W.J.: Radix representations of quadratic fields. J. Math. Anal. Appl. 83, 264–274 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  10. Grigorchuk, R.R., Nekrashevich, V.V., Sushchanski, V.I.: Automata, dynamical systems and groups. Proc. Steklov Inst. Math. 231, 128–203 (2000)

    MathSciNet  MATH  Google Scholar 

  11. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages and Computation. Addison-Wesley, Reading (1979)

    MATH  Google Scholar 

  12. Knuth, D.: Private communication, 2010

    Google Scholar 

  13. Knuth, D.E.: Commun. ACM. An imaginary number system 3, 245–247 (1960)

    Google Scholar 

  14. Lagarias, J.C., Wang, Y.: Self-affine tiles in \(\mathbb{R}^n\). Adv. Math. 121, 21–49 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  15. Lagarias, J.C., Wang, Y.: Integral self-affine tiles in \(\mathbb{R}^n\) II. Lattice tilings. J. Fourier Anal. Appl. 3(1), 83–102 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  16. Landauer, R.: The physical nature of information. Phys. Lett. A 217, 188–193 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  17. Lecerf, Y.: Machine de Turing réversible. Insolubilité récursive en \(n \in N\) de l’équation \(u = \theta ^nu\), où \(\theta \) est un “isomorphisme de codes”. C. R. Acad. Sci. Paris 257, 2597–2600 (1963)

    Google Scholar 

  18. Morita, K.: Computation universality of one-dimensional reversible cellular automata. Inf. Proc. Lett. 42, 325–329 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  19. Morita, K.: Reversible cellular automata. J. Inf. Proc. Soc. Jpn. 35, 315–321 (1994)

    Google Scholar 

  20. Morita, K.: Reversible cellular automata. Encyclopedia of Complexity and System Science. Springer, Berlin (2009)

    Google Scholar 

  21. Morita, K., Harao, M.: Computation universality of 1 dimensional reversible (injective) cellular automata. Trans. Inst. Electron. Inf. Commun. Eng. E 72, 758–762 (1989)

    Google Scholar 

  22. Nekrashevych, V.: Self-similar Groups. Mathematical Surveys and Monographs, vol. 117. AMS (2005)

    Google Scholar 

  23. Nekrashevych, V., Sidki, S.: Automorphisms of the Binary Tree: State-Closed Subgroups and Dynamics of 1/2-Endomorphisms. Cambridge University Press, Cambridge (2004)

    MATH  Google Scholar 

  24. Okano, T.: Invertible binary transducers and automorphisms of the binary tree. MS Thesis, CMU, May 2015

    Google Scholar 

  25. Pethö, A.: Connections between power integral bases and radix representations in alebraic number fields, (2009). https://arato.inf.unideb.hu/petho.attila/cikkek/cnsnagoya_paper_110.pdf

  26. Raney, G.N.: J. Assoc. Comput. Mach. Sequential functions 5(2), 177–180 (1958)

    MathSciNet  Google Scholar 

  27. Sakarovitch, J.: Elements of Automata Theory. Cambridge University Press, Cambridge (2009)

    Book  MATH  Google Scholar 

  28. Serre, J.-P.: Arbres, Amalgames, \(SL_{2}\). Number 46 in Astérisque. Société Mathématique de France, Paris (1977)

    Google Scholar 

  29. Sidki, S.: Automorphisms of one-rooted trees: growth, circuit structure, and acyclicity. J. Math. Sci. 100(1), 1925–1943 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  30. Sutner, K.: Invertible transducers and iteration. In: Juergensen, H., Reis, R. (eds.) Descriptional Complexity of Formal Systems. Lecture Notes in Computer Science, vol. 8031, pp. 18–29. Springer, Berlin (2013)

    Chapter  Google Scholar 

  31. Sutner, K.: Invertible transducers, iteration and coordinates. In: Konstantinidis, S. (ed.) CIAA. LNCS, vol. 7982, pp. 306–318. Springer, Berlin (2013)

    Google Scholar 

  32. Sutner, K.: Iteration of invertible transductions. Submitted, 2013

    Google Scholar 

  33. Sutner, K., Lewi, K.: Iterating invertible binary transducers. JALC 17(2–4), 293–213 (2012)

    Google Scholar 

  34. Sutner, K., Lewi, K.: Iterating invertible binary transducers. In: Kutrib, M., Moreira, N., Reis, R. (eds.) Descriptional Complexity of Formal Systems. Lecture Notes in Computer Science, vol. 7386, pp. 294–306. Springer, Berlin (2012)

    Chapter  Google Scholar 

Download references

Acknowledgements

It is a pleasure to acknowledge many helpful conversations with Tsutomo Okano and Tim Becker.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klaus Sutner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sutner, K. (2018). Abelian Invertible Automata. In: Adamatzky, A. (eds) Reversibility and Universality. Emergence, Complexity and Computation, vol 30. Springer, Cham. https://doi.org/10.1007/978-3-319-73216-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-73216-9_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-73215-2

  • Online ISBN: 978-3-319-73216-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics