Skip to main content

Runtime Distributions and Criteria for Restarts

  • Conference paper
  • First Online:
SOFSEM 2018: Theory and Practice of Computer Science (SOFSEM 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10706))

Abstract

Randomized algorithms sometimes employ a restart strategy. After a certain number of steps, the current computation is aborted and restarted with a new, independent random seed. In some cases, this results in an improved overall expected runtime. This work introduces properties of the underlying runtime distribution which determine whether restarts are advantageous. The most commonly used probability distributions admit the use of a scale and a location parameter. Location parameters shift the density function to the right, while scale parameters affect the spread of the distribution. It is shown that for all distributions scale parameters do not influence the usefulness of restarts and that location parameters only have a limited influence. This result simplifies the analysis of the usefulness of restarts. The most important runtime probability distributions are the log-normal, the Weibull, and the Pareto distribution. In this work, these distributions are analyzed for the usefulness of restarts. Secondly, a condition for the optimal restart time (if it exists) is provided. The log-normal, the Weibull, and the generalized Pareto distribution are analyzed in this respect. Moreover, it is shown that the optimal restart time is also not influenced by scale parameters and that the influence of location parameters is only linear.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://arxiv.org/abs/1709.10405

References

  1. Arbelaez, A., Truchet, C., Codognet, P.: Using sequential runtime distributions for the parallel speedup prediction of SAT local search. Theory Pract. Logic Program. 13(4–5), 625–639 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  2. Arbelaez, A., Truchet, C., O’Sullivan, B.: Learning sequential and parallel runtime distributions for randomized algorithms. In: ICTAI 2016: 28th International Conference on Tools with Artificial Intelligence, San Jose, California, USA, pp. 655–662. IEEE (2016)

    Google Scholar 

  3. Balkema, A.A., De Haan, L.: Residual life time at great age. Ann. Probab. 792–804 (1974)

    Google Scholar 

  4. Barrero, D.F., Muñoz, P., Camacho, D., R-Moreno, M.D.: On the statistical distribution of the expected run-time in population-based search algorithms. Soft. Comput. 19(10), 2717–2734 (2015)

    Article  Google Scholar 

  5. Caniou, Y., Codognet, P.: Sequential and parallel restart policies for constraint-based local search. In: Proceedings of the 2013 IEEE 27th International Symposium on Parallel and Distributed Processing Workshops and Ph.D. Forum, pp. 1754–1763. IEEE Computer Society (2013)

    Google Scholar 

  6. Crovella, M.E., Taqqu, M.S., Bestavros, A.: Heavy-tailed probability distributions in the World Wide Web. Pract. Guide Heavy Tails 1, 3–26 (1998)

    MATH  Google Scholar 

  7. Evans, M.R., Majumdar, S.N.: Diffusion with stochastic resetting. Phys. Rev. Lett. 106(16), 160601 (2011)

    Article  Google Scholar 

  8. Frost, D., Rish, I., Vila, L.: Summarizing CSP hardness with continuous probability distributions. In: Proceedings of the Fourteenth National Conference on Artificial Intelligence and Ninth Conference on Innovative Applications of Artificial Intelligence, AAAI 1997/IAAI 1997, pp. 327–333. AAAI Press (1997)

    Google Scholar 

  9. Gomes, C.P., Selman, B., Crato, N.: Heavy-tailed distributions in combinatorial search. In: Smolka, G. (ed.) CP 1997. LNCS, vol. 1330, pp. 121–135. Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0017434

    Chapter  Google Scholar 

  10. Hoos, H.H., Stützle, T.: Evaluating las vegas algorithms: pitfalls and remedies. In: Proceedings of the Fourteenth Conference on Uncertainty in Artificial Intelligence, pp. 238–245. Morgan Kaufmann Publishers Inc. (1998)

    Google Scholar 

  11. Kotz, S., Nadarajah, S.: Extreme Value Distributions: Theory and Applications. World Scientific, Singapore (2000)

    Book  MATH  Google Scholar 

  12. Lorenz, J.H.: Completion probabilities and parallel restart strategies under an imposed deadline. PloS one 11(10), e0164605 (2016)

    Article  Google Scholar 

  13. Lorenz, M.O.: Methods of measuring the concentration of wealth. Publ. Am. Stat. Assoc. 9(70), 209–219 (1905)

    Google Scholar 

  14. Luby, M., Sinclair, A., Zuckerman, D.: Optimal speedup of Las Vegas algorithms. Inf. Process. Lett. 47(4), 173–180 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  15. Meyer, J.: Two-moment decision models and expected utility maximization. Am. Econ. Rev. 421–430 (1987)

    Google Scholar 

  16. Van Moorsel, A.P., Wolter, K.: Analysis and algorithms for restart. In: Proceedings of the First International Conference on the Quantitative Evaluation of Systems, pp. 195–204 (2004)

    Google Scholar 

  17. Muñoz, P., Barrero, D.F., R-Moreno, M.D.: Run-time analysis of classical path-planning algorithms. In: Bramer, M., Petridis, M. (eds.) Research and Development in Intelligent Systems XXIX, pp. 137–148. Springer, London (2012). https://doi.org/10.1007/978-1-4471-4739-8_10

    Chapter  Google Scholar 

  18. Norman, L., Kotz, S., Balakrishnan, N.: Continuous Univariate Distributions, vol. 1. Wiley Series in Probability and Mathematical Statistics: Applied Probability and Statistics (1994)

    Google Scholar 

  19. Paxson, V., Allman, M., Chu, J., Sargent, M.: Computing TCP’s retransmission timer. Technical report (2011)

    Google Scholar 

  20. Reuveni, S., Urbakh, M., Klafter, J.: Role of substrate unbinding in Michaelis-Menten enzymatic reactions. Proc. Natl. Acad. Sci. U.S.A. 111(12), 4391–4396 (2014)

    Article  Google Scholar 

  21. Schöning, U.: A probabilistic algorithm for k-SAT and constraint satisfaction problems. In: Proceedings of the 40th Annual Symposium on Foundations of Computer Science, FOCS 1999, p. 410. IEEE Computer Society, Washington, DC (1999)

    Google Scholar 

  22. Wolter, K.: Stochastic Models for Fault Tolerance: Restart, Rejuvenation and Checkpointing. Springer Science & Business Media, Heidelberg (2010). https://doi.org/10.1007/978-3-642-11257-7

    Book  MATH  Google Scholar 

  23. Wu, H.: Randomization and restart strategies. Master’s thesis, University of Waterloo (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan-Hendrik Lorenz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lorenz, JH. (2018). Runtime Distributions and Criteria for Restarts. In: Tjoa, A., Bellatreche, L., Biffl, S., van Leeuwen, J., Wiedermann, J. (eds) SOFSEM 2018: Theory and Practice of Computer Science. SOFSEM 2018. Lecture Notes in Computer Science(), vol 10706. Edizioni della Normale, Cham. https://doi.org/10.1007/978-3-319-73117-9_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-73117-9_35

  • Published:

  • Publisher Name: Edizioni della Normale, Cham

  • Print ISBN: 978-3-319-73116-2

  • Online ISBN: 978-3-319-73117-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics