Skip to main content

General Formulation of Multichannel Extensions of NMF Variants

  • Chapter
  • First Online:
Audio Source Separation

Part of the book series: Signals and Communication Technology ((SCT))

Abstract

Blind source separation (BSS) is generally a mathematically ill-posed problem that involves separating out individual source signals from microphone array inputs. The frequency domain BSS approach is particularly notable in that it provides the flexibility needed to exploit various models for the time-frequency representations of source signals and/or array responses. Many frequency domain BSS approaches can be categorized according to the way in which the source power spectrograms and/or the mixing process are modeled. For source power spectrogram modeling, the non-negative matrix factorization (NMF) model and its variants have recently proved very powerful. For mixing process modeling, one reasonable way involves introducing a plane wave assumption so that the spatial covariances of each source can be described explicitly using the direction of arrival (DOA). This chapter provides a general formulation of the frequency domain BSS that makes it possible to incorporate the models for the source power spectrogram and the source spatial covariance matrix. Through this formulation, we reveal the relationship between the state-of-the-art BSS approaches. We further show that combining these models allows us to solve the problems of source separation, DOA estimation, dereverberation, and voice activity detection in a unified manner.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The permutation alignment problem refers to a problem of grouping together the separated components of different frequency bins that originate from the same source to construct a separated signal.

  2. 2.

    If we want to maximize \(\mathscr {C}({\varvec{\theta }})\), we will use a minorizer instead, which is defined as \(\mathscr {C}({\varvec{\theta }}) = \max _{{\varvec{\alpha }}} \mathscr {D}({\varvec{\theta }},{\varvec{\alpha }})\).

References

  1. A. Hyvärinen, J. Karhunen, E. Oja, Independent Component Analysis (Wiley, New York, 2001)

    Book  Google Scholar 

  2. A. Hiroe, Solution of permutation problem in frequency domain ICA using multivariate probability density functions, in Proceedings International Conference on Independent Component Analysis and Blind Source Separation (ICA) (2006), pp. 601–608

    Google Scholar 

  3. T. Kim, T. Eltoft, T.-W. Lee, Independent vector analysis: An extension of ICA to multivariate components, in Proceedings of International Conference on Independent Component Analysis and Blind Source Separation (ICA) (2006), pp. 165–172

    Google Scholar 

  4. A. Ozerov, C. Févotte, Multichannel nonnegative matrix factorization in convolutive mixtures for audio source separation. IEEE Trans. Audio Speech Lang. Process. 18(3), 550–563 (2010). Mar

    Article  Google Scholar 

  5. H. Kameoka, T. Yoshioka, M. Hamamura, J. Le Roux, K. Kashino, Statistical model of speech signals based on composite autoregressive system with application to blind source separation, in Proceedings of International Conference on Latent Variable Analysis and Signal Separation (LVA/ICA) (2010), pp. 245–253

    Google Scholar 

  6. A. Ozerov, C. Févotte, R. Blouet, J.-L. Durrieu, Multichannel nonnegative tensor factorization with structured constraints for user-guided audio source separation, in Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Prague, May 2011, pp. 257–260

    Google Scholar 

  7. H. Sawada, H. Kameoka, S. Araki, N. Ueda, Multichannel extensions of non-negative matrix factorization with complex-valued data. IEEE Trans. Audio Speech Lang. Process. 21(5), 971–982 (2013). May

    Article  Google Scholar 

  8. J. Nikunen, T. Virtanen, Direction of arrival based spatial covariance model for blind sound source separation. IEEE/ACM Trans. Audio Speech Lang. Process. 22(3), 727–739 (2014). Mar

    Article  Google Scholar 

  9. D. Kitamura, N. Ono, H. Sawada, H. Kameoka, H. Saruwatari, Efficient multichannel nonnegative matrix factorization exploiting rank-1 spatial model, in Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), April 2015, pp. 276–280

    Google Scholar 

  10. D. Kitamura, N. Ono, H. Sawada, H. Kameoka, H. Saruwatari, Determined blind source separation unifying independent vector analysis and nonnegative matrix factorization. IEEE/ACM Trans. Audio Speech Lang. Process. 24(9), 1626–1641 (2016)

    Article  Google Scholar 

  11. K. Adiloğlu, E. Vincent, Variational Bayesian inference for source separation and robust feature extraction. IEEE/ACM Trans. Audio Speech Lang. Process. 24, 1746–1758 (2016)

    Article  Google Scholar 

  12. D. Kounades-Bastian, L. Girin, X. Alameda-Pineda, S. Gannot, R. Horaud, A variational EM algorithm for the separation of time-varying convolutive audio mixtures. IEEE/ACM Trans. Audio Speech Lang. Process. 24(8), 1408–1423 (2016)

    Article  Google Scholar 

  13. P. Smaragdis, J.C. Brown, Non-negative matrix factorization for polyphonic music transcription, in Proceedings of IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA) (2003), pp. 177–180

    Google Scholar 

  14. C. Févotte, N. Bertin, J.-L. Durrieu, Nonnegative matrix factorization with the Itakura-Saito divergence. With application to music analysis. Neural Comput. 21(3), 793–830 (2009). Mar

    Article  MATH  Google Scholar 

  15. T. Higuchi, H. Takeda, T. Nakamura, H. Kameoka, A unified approach for underdetermined blind signal separation and source activity detection by multichannel factorial hidden Markov models, in Proceedings of Annual Conference of the International Speech Communication Association (Interspeech) (2014), pp. 850–854

    Google Scholar 

  16. T. Higuchi, H. Kameoka, Joint audio source separation and dereverberation based on multichannel factorial hidden Markov model, in Proceedings of IEEE International Workshop on Machine Learning for Signal Processing (MLSP) (2014)

    Google Scholar 

  17. T. Higuchi, H. Kameoka, Unified approach for underdetermined BSS, VAD, dereverberation and DOA estimation with multichannel factorial HMM, in Proceedings of IEEE Global Conference on Signal and Information Processing (GlobalSIP) (2014)

    Google Scholar 

  18. T. Higuchi, H. Kameoka, Unified approach for audio source separation with multichannel factorial HMM and DOA mixture model, in Proceedings of European Signal Processing Conference (EUSIPCO), August 2015

    Google Scholar 

  19. H. Kameoka, M. Sato, T. Ono, N. Ono, S. Sagayama, Blind separation of infinitely many sparse sources, in Proceedings of International Workshop on Acoustic Signal Enhancement (IWAENC) (2012)

    Google Scholar 

  20. H. Kameoka, M. Sato, T. Ono, N. Ono, S. Sagayama, Bayesian nonparametric approach to blind separation of infinitely many sparse sources. IEICE Trans. Fundamentals Electronics E96-A(10), 1928–1937 (2013)

    Google Scholar 

  21. T. Otsuka, K. Ishiguro, H. Sawada, H.G. Okuno, Bayesian nonparametrics for microphone array processing. IEEE/ACM Trans. Audio Speech Lang. Process. 22(2), 493–504 (2014)

    Article  Google Scholar 

  22. T. Higuchi, N. Takamune, T. Nakamura, H. Kameoka, Underdetermined blind separation and tracking of moving sources based on DOA-HMM, in Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (2014), pp. 3215–3219

    Google Scholar 

  23. H. Attias, New EM algorithms for source separation and deconvolution with a microphone array, in Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), vol. V (2003), pp. 297–300

    Google Scholar 

  24. N.Q.K. Duong, E. Vincent, R. Gribonval, Under-determined reverberant audio source separation using a full-rank spatial covariance model. IEEE Trans. Audio Speech Lang. Process. 18(7), 1830–1840 (2010)

    Article  Google Scholar 

  25. A. Ozerov, E. Vincent, F. Bimbot, A general flexible framework for the handling of prior information in audio source separation. IEEE Trans. Audio Speech Lang. Process. 20(4), 1118–1133 (2012)

    Article  Google Scholar 

  26. T. Ono, N. Ono, S. Sagayama, User-guided independent vector analysis with source activity tuning, in Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (2012), pp. 2417–2420

    Google Scholar 

  27. S. Dégerine, A. Zaïdi, Separation of an instantaneous mixture of gaussian autoregressive sources by the exact maximum likelihood approach. IEEE Trans. Sig. Process. 52(6), 1499–1512 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  28. T. Yoshioka, T. Nakatani, M. Miyoshi, H.G. Okuno, Blind separation and dereverberation of speech mixtures by joint optimization. IEEE Trans. Audio Speech Lang. Process. 19(1), 69–84 (2011). Mar.

    Article  Google Scholar 

  29. H. Kameoka, K. Kashino, Composite autoregressive system for sparse source-filter representation of speech, in Proceedings of IEEE International Symposium on Circuits and Systems (ISCAS) (2009), pp. 2477–2480

    Google Scholar 

  30. N.Q.K. Duong, H. Tachibana, E. Vincent, N. Ono, R. Gribonval, S. Sagayama, Multichannel harmonic and percussive component separation by joint modeling of spatial and spectral continuity, in Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (2011), pp. 205–208

    Google Scholar 

  31. J.D. Leeuw, W.J. Heiser, Convergence of correction matrix algorithms for multidimensional scaling, in Geometric representations of relational data, ed. by J.C. Lingoes, E.E. Roskam, I. Borg (Mathesis Press, Ann Arbor, MI, 1977)

    Google Scholar 

  32. D.R. Hunter, K. Lange, A tutorial on MM algorithms. Am. Statistician 58(1), 30–37 (2004). Feb.

    Article  MathSciNet  Google Scholar 

  33. A.P. Dempster, N.M. Laird, D.B. Rubin, Maximum likelihood from incomplete data via the EM algorithm. J. R. Statistical Soc. Series B 39, 1–38 (1977)

    MathSciNet  MATH  Google Scholar 

  34. D.D. Lee, H.S. Seung, Algorithms for non-negative matrix factorization, in Advances in Neural Information Processing Systems, vol. 13 (2001)

    Google Scholar 

  35. M. Nakano, H. Kameoka, J. Le Roux, Y. Kitano, N. Ono, S. Sagayama, Convergence-guaranteed multiplicative algorithms for non-negative matrix factorization with beta-divergence, in Proceedings of IEEE International Workshop on Machine Learning for Signal Processing (2010), pp. 283–288

    Google Scholar 

  36. C. Févotte, J. Idier, Algorithms for nonnegative matrix factorization with the \(\beta \)-divergence. Neural Comput. 23(9), 2421–2456 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  37. C. Bishop, Pattern Recognit. Mach. Learn. (Springer-Verlag, New York, 2006)

    Google Scholar 

  38. Y. Izumi, N. Ono, S. Sagayama, Sparseness-based 2ch BSS using the EM algorithm in reverberant environment, in Proceedings of IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA) (2007), pp. 147–150

    Google Scholar 

  39. H. Kameoka, M. Goto, S. Sagayama, Selective amplifier of periodic and non-periodic components in concurrent audio signals with spectral control envelopes, in IPSJ SIG Technical Reports, vol. 2006-MUS-66-13 (2006), pp. 77–84, in Japanese

    Google Scholar 

  40. S. Amari, A. Cichocki, H.H. Yang, A new learning algorithm for blind signal separation, in Advances in Neural Information Processing Systems (MIT Press, 1996), pp. 757–763

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hirokazu Kameoka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kameoka, H., Sawada, H., Higuchi, T. (2018). General Formulation of Multichannel Extensions of NMF Variants. In: Makino, S. (eds) Audio Source Separation. Signals and Communication Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-73031-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-73031-8_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-73030-1

  • Online ISBN: 978-3-319-73031-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics